Supporting Information

Growth of Single Crystalline Cubic Structured Tin (II) Sulfide (SnS) Nanowires by Chemical Vapor Deposition

Devika Mudusu1,2,\#, Koteeswara Reddy Nandanapalli1,3,\#,*, Sreekantha Reddy Dugasani3,\#, Jang Won Kang1,4, Sung Ha Park3,*, and Charles W. Tu1,5,*

1Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju-500712, Republic of Korea
2School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440746, South Korea
3Department of Physics, Sungkyunkwan University, Suwon 440746, South Korea
4Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
5Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, USA
SI1: Experimental setup of CVD system.

Fig. SI1: Schematic diagram of chemical vapor deposition system

SI2: Au catalysts coated on sapphire and Si substrates by e-beam evaporation.

Fig. SI2: FESEM images of Au catalyst coated (a) sapphire and (b) Si substrates
SI3: SnS Nanostructures grown at different temperatures below 650 °C

![Image of SnS nanostructures grown at different temperatures](image)

Fig. SI3: Figure 1: FESEM images of SnS nanostructures grown on sapphire (left column) and Si (right column) substrates at the growth temperature of (a, b) 500, (c, d) 550 and (e, f) 600 °C, respectively.

SI4: Surface morphology of SnS nanostructures grown on sapphire substrates at 600 °C.

![Image of surface morphology](image)

Fig. SI4: FESEM images of SnS nanostructures grown at 600 °C (a) high and (b) low magnification images (consists of different morphologies)
SI5: Surface morphology of SnS NWs grown on Si substrate at 650 °C

![Image of SnS NWs grown on Si substrate at 650 °C](image01)

Fig. SI5: FESEM image of SnS NWs grown on Si substrate at 650 °C

SI6: SnS Nanostructures grown at different temperatures above 650 °C

![Image of SnS nanostructures grown on sapphire and Si substrates at various temperatures](image02)

Fig. SI6: FESEM images of SnS nanostructures grown on sapphire (left column) and Si (right column) substrates at the growth temperature of (a, b) 700, (c, d) 800 and (e, f) 950 °C, respectively.
SI7: Diameters of SnS nanowires present on top surface of the structures, which were extracted by using ImageJ software for different samples grown at different temperatures.

![Graph showing variation of diameter of SnS nanowire as a function of different nanowires present on the top surface of the structures.](image)

Fig. SI7: Variation of diameter of SnS nanowire as a function of different nanowires present on the top surface of the structures.

SI8: Chemical composition of SnS NWs grown at 650 °C.

![EDS spectrum of SnS NWs on Si substrates at the growth temperature of 650 °C.](image)

Fig. SI8: EDS spectrum of SnS NWs on Si substrates at the growth temperature of 650 °C

SI9: Calculation of lattice parameter(s) of SnS nanowires

From the standard geometric concepts, the following equation can be derived for a unit cell lattice consists of a, b, c as lattice constants, d as space between two consecutive atoms and h, k,
l are Miller indices.

\[\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2} \]

For cubic structured lattice \(a = b = c \), therefore, the above equation can be written as

\[\frac{1}{d^2} = \frac{1}{a^2} (h^2 + k^2 + l^2) \]

In the present study, the obtained \(d \) is 0.275 nm and thus, \(a^2 = 4d^2 \),

\[\implies a = 0.55 \text{ nm} \]

\(= b = c \).

SI10: Survey scan of the XPS spectrum of SnS nanowires

![Survey scan of XPS spectrum of SnS nanowires](image)

Fig. SI10: Survey scan of XPS spectrum of SnS nanowires grown on Si substrate at the growth temperature of 650 °C

SI11: SnS films on sapphire substrate at a growth temperature of 450 °C
Fig. SI11: FESEM image of SnS films grown at the growth temperature of 450 °C