Supplementary Information

Acid-treated Reduced Graphene Oxides/Mn$_3$O$_4$ Nanorods Nanocomposite as an Enhanced Anode Material for Lithium Ion Batteries

Chae-Yong Seong, a Seung-Keun Park, b Youngkuk Bae, a Suyeon Yoo, a Yuanzhe Piao a,c,*

a Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon–si, Gyeonggi-do, 443-270, Republic of Korea.

b Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea

*Corresponding author, E-mail: parkat9@snu.ac.kr (Prof. Yuanzhe Piao)
Fig. S1 SEM images of the ArGO/Mn₃O₄ NR after 100 cycles.
Fig. S2 Cycle performance of ArGO at a current density of 200 mA g⁻¹.

Fig. S3 Comparative cycle performance of Mn₃O₄ NR, rGO/Mn₃O₄ NR and ArGO/Mn₃O₄ NR.
The areal loading of the active materials

\[
\frac{0.7 \text{ (Total electrode weight - Cu weight)}}{0.95} \text{mg} \cdot \text{cm}^{-2}
\]

Mn$_3$O$_4$ electrode : 0.54 mg/cm2

rGO/Mn$_3$O$_4$ electrode : 0.50 mg/cm2

ArGO/Mn$_3$O$_4$ electrode : 0.56 mg/cm2