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1 Artificial Neural Networks (ANNs)

ANNS s is a computer-based model in which a number of processing elements, also called neurons, units or nodes are interconnected by
links in a netlike structure forming “layers".! A variable value is assigned to every neuron. The neurons can be one of three different
kinds. The input neurons form the input layer, which receives their values by direct assignation and are associated with independent
variables, with the exception of the bias neuron. The hidden neurons collect values from the input neurons, giving a result that is
passed to a non-input neuron. Finally, the output neurons collect values from other units and correspond to different dependent
variables, forming the output layer. The links between units have associated values, named weights that condition the values assigned
to the neurons. There exist additional weights assigned to bias values that act as neuron value offsets. The weights are adjusted through
a training process in order to minimize network error. Commonly neural networks are adjusted, or trained, so that a particular input
leads to a specific target output.

2 Training the ANN models

To correlate the electron properties to the autocorrelation vectors, we used different machine learning techniques. The training and
test sets were randomly generated from 50% and 50% of the data set, respectively. The training set was used to calibrated the machine
learning models whilst the test set was used to test the prediction ability of the models.

The quality of the fit is described by an R? value where N is the number of nanoparticles, ¥; and P; are the machine learning predicted
and phenomenological model-derived catalytic activity and stability of Pt nanoparticle i, respectively. The average property value over
all nanoparticles is given by P. When computed on the training set, R measures how well the model fits the phenomenological model
data. To check for the possibility of overfitting, we applied a technique known as internal three-fold-out (TFO) cross-validation. Here
we divide the training set into three subsets and then remove one while the other two are used to fit the regression model. The resulting
model is then compared against the phenomenological model data for the left-out subset. This process is repeated until all the subsets
have been validated against each other. Equation 1 is used to measure the fit of the model against each left-out subset except that we
use the symbol R% o to distinguish from the case where the whole training set is considered. Different number of neurons in the hidden
layer were evaluated and the network with the highest RZT ro Was selected as optimum.
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3 Single scatter plots of the molar catalytic activity and stability of the Pt nanocatalysts

We first analyse the behaviour of the molar catalytic activity and stability of the Pt nanocatalysts as functions of the global structural fea-
tures. Figure S1 illustrates that the correlation patterns of both properties strongly dependent on the configurations of the nanoparticle
facets.
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Figure S1 Scatter plots of the (a, c and e) catalytic activity and (b, d and f) stability at 25 °C of Pt nanoparticles as a function of (a and b) surface area,
(c and d) diameter and and (c and d) sphericity.
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5 Learning curves of the machine learning models of the catalytic efficiency

Learning curve plots of root mean square errors of crossvalidation (RMSE¢y) for increasing number of training examples appear in
Figure S2 for mean predictor (meanp), multilinear regression (MLR), ridge regression (Ridge), decision tree regression (Tree) and
artificial neural networks (ANN) as described in2. These plots illustrate that the optimum predictions are yielded by the ANN models.
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Figure S2 Learning curves of the (a) catalytic activity, (b) selectivity and (c) stability at 25 °C of Pt nanoparticles

Activity Selectivity
- 12.50
—e—meanp —*—meanp
1 10.00 - —emlr
——mir
. 750 ridge
ridge 2
b v
| g rtree
= 5.00 «
i rtree 1
ann
2.50 4,
N ann B
i N T o
— T — : . 0.00 4 r : . y ,
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
training fraction training fraction
(b)
Thermodynamical Stability
16.40 *-meanp
14.40 —e—mir
12.40 .
ridge
= 1040 4,
- rtree
S 8407
-4
6.40 ann
4.40 4
2.40 +
0.40 +- r r T r 3
o 0.2 0.4 0.6 0.8 1

6 Accuracy of two-variable models of molar catalytic activity and stability of Pt nanoparticles

Heatmaps of cross-validation accuracies of the two-variable models of molar catalytic activity and stability of Pt nanoparticles in Figure

S3.
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Figure S3 Heatmaps of the accuracy of the two-inputs ANN models of the catalytic activity (a) and stability (b) of the Pt nanoparticles at 25 °C.

7 Decision tree model of the thermodynamical stability

The DT analysis yields a simpler model of molar stability in Figure S4 with only one fundamental rule accounting for the low thermo-
dynamic stability of nanoparticles with less than 1000 total atoms in the surface.
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Figure S4 Binary DT model of the molar thermodynamical stability at 25 °C of the Pt nanoparticles.
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