SUPPORTING INFORMATION:

Unveiling and Tackling Guanidinium Peptide Coupling Reagent Side Reactions towards the Development of Peptide-Drug Conjugates

Eirinaios I. Vrettos, Nisar Sayyad, Eftychia M. Mavrogiannaki, Evgenios Stylos, Kostagianni D. Androniki, Serafim Papas, Thomas Mavromoustakos, Vassiliki Theodorou, Andreas G. Tzakos*

Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece.

*e-mail: agtzakos@gmail.com

Contents

1. NMR characterization of the methyl esters of amino acids 8-14 ..4
 - Compound 8 (Tyr-OMe): (S)-methyl 2-amino-3-(4-hydroxyphenyl)propanoate:4
 - Compound 9 (Lys-OMe): Methyl 2, 6-diaminohexanoate hydrochloride:4
 - Compound 10 (Trp-OMe): (S)-methyl 2-amino-3-(1H-indol-3-yl)propanoate:4
 - Compound 11 (His-OMe): Methyl 2-amino-3-(1H-imidazol-4-yl)propanoate:...............5
 - Compound 12 (Ser-OMe): Methyl 2-amino-3-hydroxypropanoate:5
 - Compound 13 (Thr-OMe): (2S,3S)-methyl 2-amino-3-hydroxybutanoate:6
 - Compound 14 (Arg-OMe): Methyl 2-amino-5-guanidinopentanoate:6

2. Mass characterization of the amino dipeptide coupling products7
 - Compounds 15 (Fmoc-Ser(tBu)-Tyr-OMe) ..7
 - Compound 15a: (S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-
 (tert-butoxy)propanamido)-3-(4-hydroxyphenyl)propanoate:7
 - Compound 15b: 2-(4-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-
 (tert-butoxy)propanamido)-3-methoxy-3-oxopropyl)phenyl:7
 - Compounds 16 (Fmoc-Ser(tBu)-Lys-OMe) ...10
 - Compound 16a: Methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-
 (tert-butoxy)propanamido)-6-aminohexanoate: ...10
 - Compound 16b: (S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-
 (tert-butoxy)propanamido)-3-(4-hydroxyphenyl)propanoate:10
 - Compounds 17 (Fmoc-Ser(tBu)-Trp-OMe) ...13

Compound 17a: (R)-methyl 2-(((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-(1H-indol-2-yl) propanoate: ... 13

Compounds 18 (Fmoc-Ser(tBu)-His-OMe) .. 16

Compound 18a: Methyl 2-(((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-(1H-imidazol-4-yl) propanoate: ... 16

Compound 18b: N-((4-((2-((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-methoxy-3-oxopropyl)-1H-imidazol-1-yl)(dimethylamino)methylene)-N-methylmethanaminium: ... 16

Compounds 19 (Fmoc-Ser(tBu)-Ser-OMe) .. 19

Compound 19a: (S)-methyl 2-(((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-hydroxypropanoate: .. 19

Compound 19b: 2-((S)-2-((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-methoxy-3-oxopropyl)-1,1,3,3-tetramethylisouronium: 19

Compounds 20 (Fmoc-Ser(tBu)-Thr-OMe) .. 22

Compound 20a: (2S)-methyl 2-(((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-hydroxybutanoate: ... 22

Compound 20b: 2-((3S)-3-((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-4-methoxy-4-oxobutan-2-yl)-1,1,3,3-tetramethylisouronium: 22

Compounds 21 (Fmoc-Ser(tBu)-Arg-OMe) .. 25

Compound 21a: (S)-methyl 2-(((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-hydroxypropanoate: .. 25

Compound 21b: 2-((S)-2-((S)-2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-3-(tert-butoxy) propanamido)-3-methoxy-3-oxopropyl)-1,1,3,3-tetramethylisouronium: 25

3. Purification and characterization of compound 6 ... 28

Purification of compound 6: .. 28

1D/2D NMR characterization of compound 6: .. 28

Analytical RP-HPLC of the purified compound 6: .. 30

HRMS characterization of compound 6: .. 31

4. Purification and characterization of compound 22 ... 31

Structure of peptide [D-Lys]^6-GnRH: ... 31

Purification of peptide [D-Lys]^6-GnRH: .. 32

Mass characterization of peptide [D-Lys]^6-GnRH: ... 32

Structure of compound 22: .. 33

Purification of compound 22: .. 33
Mass characterization of compound 22: ... 34
\(^1\)H-NMR characterization of compound 22: .. 35
5. Purification and characterization of compound 23 ... 35
Structure of peptide Fmoc-HER2-BP1: ... 35
Purification of peptide Fmoc-HER2-BP1: ... 36
Mass characterization of peptide Fmoc-HER2-BP1: .. 36
Structure of compound 23: .. 37
Purification of compound 23: .. 37
Mass characterization of compound 23: ... 38
\(^1\)H-NMR characterization of compound 23: ... 38
6. Purification and characterization of compounds 24 and 25 38
Structures of dipeptides Fmoc-Cys-Tyr-NH\(_2\) and Fmoc-Ser-Tyr-NH\(_2\): 39
Purification of dipeptides Fmoc-Cys-Tyr-NH\(_2\) and Fmoc-Ser-Tyr-NH\(_2\): 39
Mass characterization of dipeptides Fmoc-Cys-Tyr-NH\(_2\) and Fmoc-Ser-Tyr-NH\(_2\): 40
Structures of compounds 24 and 25: ... 40
Purification of compounds 24 and 25: ... 41
Mass characterization of compounds 24 and 25: ... 42
\(^1\)H-NMR characterization of compounds 24 and 25: ... 42
7. Purification and characterization of compound 26 ... 44
Structure of peptide C1B5\(_{141-151}\): ... 44
Purification of peptide C1B5\(_{141-151}\): ... 44
Mass characterization of peptide C1B5\(_{141-151}\): ... 45
Structure of compound 26: .. 45
Purification of compound 26: .. 45
Mass characterization of compound 26: ... 46
8. Purification and characterization of compound 27 ... 46
9. Mass characterization of expected compounds 28 (uronium) and 29 (guanidinium). ... 48
1. NMR characterization of the methyl esters of amino acids 8-14

Compound 8 (Tyr-OMe): (S)-methyl 2-amino-3-(4-hydroxyphenyl)propanoate:

![Chemical structure of Compound 8](image)

The amino acid analogue of tyrosine was obtained as a white solid in 98% yield.

1H-NMR (250 MHz, DMSO-d$_6$): δ(ppm) 9.46 (s, 1H), 8.52 (s, 3H), 7.04 (d, J = 8.4 Hz, 2H), 6.75 (d, J= 8.4Hz, 2H), 4.22 (t, J = 6.4Hz, 1H), 3.71 (s, 3H), 3.04 (t, J= 6.1Hz, 1H). 13C-NMR (63 MHz, DMSO-d$_6$): δ(ppm) 170.44, 157.03, 131.34, 125.21, 116.38, 54.36, 53.54, 36.09.

Compound 9 (Lys-OMe): Methyl 2, 6-diaminohexanoate hydrochloride:

![Chemical structure of Compound 9](image)

The amino acid analogue of lysine was obtained as a white solid in 96% yield.

1H-NMR (250 MHz, DMSO-d$_6$): δ(ppm) 8.62 (br, 2H), 8.09 (br, 2H), 3.97 (t, J = 5 Hz, 1H), 3.73 (s, 3H), 3.34 (d, J = 2.5Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 1.84-1.75 (m, 2H), 1.61-1.48 (m, 2H). 13C-NMR (63 MHz, DMSO-d$_6$): δ(ppm) 169.87, 52.8, 51.61, 38.14, 29.27, 26.20, 21.18.

Compound 10 (Trp-OMe): (S)-methyl 2-amino-3-(1H-indol-3-yl)propanoate:
The amino acid analogue of tryptophan was obtained as a brown solid in 96% yield.

1H-NMR (250 MHz, DMSO-d$_6$): δ(ppm) 11.09 (s, 1 H), 8.51 (s, 3H), 7.49 (d, $J = 7.5$ Hz, 1H), 7.37 (d, $J = 7.8$Hz, 1H), 7.23 (d, $J = 2.3$Hz, 1H), 7.09 (t, $J = 7.1$ Hz, 1H), 7.00 (t, $J = 7.1$Hz, 1H), 4.24 (br, 1H), 3.65 (s, 3H), 3.28 (dd, $J = 3.6$Hz, 6.3Hz, 2H). 13C-NMR (63 MHz, DMSO-d$_6$): δ(ppm) 169.81, 136.25, 125.02, 126.90, 125.02, 121.25, 118.7, 117.99, 111.63, 106.29, 52.73, 52.69, 26.15.

Compound 11 (His-OMe): Methyl 2-amino-3-(1H-imidazol-4-yl)propanoate:

The amino acid analogue of histidine was obtained as a grey solid in 94% yield.

1H-NMR (250 MHz, DMSO-d$_6$): δ(ppm) 8.96 (s, 1 H), 7.46 (s, 1H), 4.41 (t, $J = 7.5$ Hz, 1H), 3.72 (s, 3H), 5.12 (br, 2H), 3.35 (d, $J = 2.5$Hz, 2H). 13C-NMR (63 MHz, DMSO-d$_6$): δ(ppm) 168.75, 134.26, 126.99, 118.01, 52.9, 51.12, 25.25.

Compound 12 (Ser-OMe): Methyl 2-amino-3-hydroxypropanoate:

The amino acid analogue of serine was obtained as a white solid in 89% yield.
\(^1\)H-NMR (500 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 5.54 (br, 2H), 4.06 (d, J = 2.5Hz, 2H), 3.59 (s, 3H), 3.40 (br, 1H), 3.19 (t, J = 5Hz, 2H). \(^1\)\(^3\)C-NMR (63 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 170.5, 63.7, 58.4, 55.3.

Compound 13 (Thr-OMe): (2S,3S)-methyl 2-amino-3-hydroxybutanoate:

![Chemical structure of Compound 13](image)

The amino acid analogue of threonine was obtained as a sticky white solid in 91.5% yield.

\(^1\)H-NMR (250 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 8.42 (s, 3H), 5.68 (d, J = 4.4Hz, 1H), 4.16 (m, 1H), 3.96 (d, J = 3.8Hz, 1H), 3.78 (s, 3H), 1.24 (d, J = 6.6 Hz, 3H). \(^1\)\(^3\)C-NMR (63 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 169.59, 65.94, 58.81, 53.73, 20.93.

Compound 14 (Arg-OMe): Methyl 2-amino-5-guanidinopentanoate:

![Chemical structure of Compound 14](image)

The amino acid analogue of arginine was obtained as a whitesolid in 97% yield.

\(^1\)H-NMR (250 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 2.29 (dt, J = 1.4, 5.4 Hz, 2H), 3.09 (m, 5H), 3.61 (m, 3H), 3.67 (s, 3H), 7.41 (m, 10H), 7.91 (m, 2H), 8.43 (br, 1H).

\(^1\)\(^3\)C-NMR (100 MHz, DMSO-\(d_6\)): \(\delta\) (ppm) 24.8, 30.0, 44.3, 46.4, 52.7, 53.3, 54.0, 120.6, 121.9, 127.9, 129.5, 157.6, 159.4, 161.3, 172.6, 173.9.
2. Mass characterization of the amino dipeptide coupling products

Compounds 15 (Fmoc-Ser(tBu)-Tyr-OMe)

Compound 15a: (S)-methyl 2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-(4-hydroxyphenyl)propanoate:

![Chemical structure of Compound 15a]

Compound 15b: 2-(4-((S)-2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-methoxy-3-oxopropyl)phenyl)-1,1,3,3-tetramethylisouronium:

![Chemical structure of Compound 15b]

Mass: ESI-MS m/z: calcd: 659.34 [M+H]+; found: 660.14 [M+H]+.
HATU 1.5 equivalents:

Fig. S1 Mass spectrum of compounds 15 with 1.5 eq of HATU.

HATU 1.0 equivalent:

Fig. S2 Mass spectrum of compounds 15 with 1 eq of HATU.
HBTU 1.5 equivalents:

Fig. S3 Mass spectrum of compounds 15 with 1.5 eq of HBTU.

HBTU 1.0 equivalent:

Fig. S4 Mass spectrum of compounds 15 with 1 eq of HBTU.
Compounds 16 (Fmoc-Ser(tBu)-Lys-OMe)

Compound 16a: Methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-6-aminohexanoate:

![Chemical structure of Compound 16a]

Mass: ESI-MS m/z: calcd: 525.28 [M+H]^+; found: 526.2 [M+K]^+.

Compound 16b: (S)-methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-(4-hydroxyphenyl)propanoate:

![Chemical structure of Compound 16b]

Mass: ESI-MS m/z: calcd: 623.37 [M+H]^+; found: 624.3 [M+H]^+.
HATU 1.5 equivalents:

![Fig. S5](image1) Mass spectrum of compounds 16 with 1.5 eq of HATU.

HATU 1.0 equivalent:

![Fig. S6](image2) Mass spectrum of compounds 16 with 1 eq of HATU.
HBTU 1.5 equivalents:

Fig. S7 Mass spectrum of compounds 16 with 1.5 eq of HBTU.

HBTU 1.0 equivalent:

Fig. S8 Mass spectrum of compounds 16 with 1 eq of HBTU.
Compounds 17 (Fmoc-Ser(tBu)-Trp-OMe)

Compound 17a: (R)-methyl 2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-(1H-indol-2-yl)propanoate:

![Chemical structure of Compound 17a]

Compound 17b: N-((2-((R)-2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-methoxy-3-oxopropyl)-1H-indol-1-yl)(dimethylamino)methylene)-N-methylmethanaminium):

![Chemical structure of Compound 17b]

Mass: ESI-MS m/z: calcd: 682.36 [M+H]$^+$; found: -
HATU 1.5 equivalents:

Fig. S9 Mass spectrum of compounds 17 with 1.5 eq of HATU.

HATU 1.0 equivalent:

Fig. S10 Mass spectrum of compounds 17 with 1 eq of HATU.
HBTU 1.5 equivalents:

Fig. S11 Mass spectrum of compounds 17 with 1.5 eq of HBTU.

HBTU 1.0 equivalent:

Fig. S12 Mass spectrum of compounds 17 with 1 eq of HBTU.
Compounds 18 (Fmoc-Ser(tBu)-His-OMe)

Compound 18a: Methyl 2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-(1H-imidazol-4-yl)propanoate:

![Chemical Structure of Compound 18a]

Mass: ESI-MS m/z: calcd: 534.25 [M+H]$^+$; found: 535.2548 [M+H]$^+$.

Compound 18b: N-((4-(2-((S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-methoxy-3-oxopropyl)-1H-imidazol-1-yl)(dimethylamino)methylene)-N-methylmethanaminium:

![Chemical Structure of Compound 18b]

Mass: ESI-MS m/z: calcd: 633.34 [M+H]$^+$; found: -
HATU 1.5 equivalents:

Fig. S13 Mass spectrum of compounds 18 with 1.5 eq of HATU.

HATU 1.0 equivalent:

Fig. S14 Mass spectrum of compounds 18 with 1 eq of HATU.
HBTU 1.5 equivalents:

Fig. S15 Mass spectrum of compounds 18 with 1.5 eq of HBTU.

HBTU 1.0 equivalent:

Fig. S16 Mass spectrum of compounds 18 with 1 eq of HBTU.
Compounds 19 (Fmoc-Ser(tBu)-Ser-OMe)

Compound 19a: (S)-methyl 2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-hydroxypropanoate:

![Chemical Structure of Compound 19a](image)

Compound 19b: 2-((S)-2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-methoxy-3-oxopropyl)-1,1,3,3-tetramethylisouronium:

![Chemical Structure of Compound 19b](image)

Mass: ESI-MS m/z: calcd: 484.32 [M+H]$^+$; found: -
HATU 1.5 equivalents:

![Mass spectrum of compounds 19 with 1.5 eq of HATU.](image)

Fig. S17 Mass spectrum of compounds 19 with 1.5 eq of HATU.

HATU 1.0 equivalent:

![Mass spectrum of compounds 19 with 1 eq of HATU.](image)

Fig. S18 Mass spectrum of compounds 19 with 1 eq of HATU.
HBTU 1.5 equivalents:

Fig. S19 Mass spectrum of compounds 19 with 1.5 eq of HBTU.

HBTU 1.0 equivalent:

Fig. S20 Mass spectrum of compounds 19 with 1 eq of HBTU.
Compounds 20 (Fmoc-Ser(tBu)-Thr-OMe)

Compound 20a: (2S)-methyl 2-(((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-hydroxybutanoate:

![Chemical structure of Compound 20a](image)

Compound 20b: 2-(((3S)-3-(((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-4-methoxy-4-oxobutan-2-yl)-1,1,3,3-tetramethylisouronium:

![Chemical structure of Compound 20b](image)

Mass: ESI-MS m/z: calcd: 597.33 [M+H]^+; found: -
HATU 1.5 equivalents:

Fig. S21 Mass spectrum of compounds 20 with 1.5 eq of HATU.

HATU 1.0 equivalent:

Fig. S22 Mass spectrum of compounds 20 with 1 eq of HATU.
HBTU 1.5 equivalents:

Fig. S23 Mass spectrum of compounds 20 with 1.5 eq of HBTU.

HBTU 1.0 equivalent:

Fig. S24 Mass spectrum of compounds 20 with 1 eq of HBTU.
Compounds 21 (Fmoc-Ser(tBu)-Arg-OMe)

Compound 21a: (S)-methyl 2-(((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-hydroxypropanoate:

![Chemical structure of Compound 21a]

Mass: ESI-MS m/z: calcd: 555.29 [M+H]$^+$; found: 555.13 [M+H]$^+$.

Compound 21b: 2-((S)-2-((S)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(tert-butoxy)propanamido)-3-methoxy-3-oxopropyl)-1,1,3,3-tetramethylisouronium:

![Chemical structure of Compound 21b]

Mass: ESI-MS m/z: calcd: 651.37 [M+H]$^+$; found: -
HATU 1.5 equivalents:

Fig. S25 Mass spectrum of compounds 21 with 1.5 eq of HATU.

HATU 1.0 equivalent:

Fig. S26 Mass spectrum of compounds 21 with 1 eq of HATU.
HBTU 1.5 equivalents:

![Mass spectrum of compounds 21 with 1.5 eq of HBTU.](image)

Fig. S27 Mass spectrum of compounds 21 with 1.5 eq of HBTU.

HBTU 1.0 equivalents:

![Mass spectrum of compounds 21 with 1 eq of HBTU.](image)

Fig. S28 Mass spectrum of compounds 21 with 1 eq of HBTU.
3. Purification and characterization of compound 6

Purification of compound 6:

Fig. S29 Semi-prep RP-HPLC chromatogram during the purification of compound 5 and compound 6 (Gradient system: from 90/10% until 60/40% of H₂O+0.1%TFA/MeCN+0.1%TFA, in 20mins at 214nm).

1D/2D NMR characterization of compound 6:
The formation of compound 6 is verified with 1D/2D NMR spectroscopy, as shown below:
Fig. S30 ¹H-NMR of compound 6 in DMSO-d₆ at 298K. The peaks of gemcitabine and of the phenol of tyrosine are highlighted.

In Fig. S30 the peaks of both gemcitabine and GnRH can be seen. Moreover, the peak of -OH group of tyrosine is clearly proving the formation of compound 6 and not of compound 5.

Fig. S31 ¹H-NMR of compound 6 in D₂O at 298K. The peaks of gemcitabine are highlighted.
In Fig. S31 the peaks of both gemcitabine and GnRH can be seen. Moreover, the peak regarding 3’-OH of gemcitabine and the peak of -OH group of tyrosine are absent because of proton exchange due to the presence of D$_2$O.

![Figure S31](image)

Fig. S31 Overlay of 2D NMR TOCSY spectra of [D-Lys]5-GnRH (red color) and compound 6 (black color) in D$_2$O at 298K

Analytical RP-HPLC of the purified compound 6:

![Figure S32](image)

Fig. S32 Analytical RP-HPLC chromatogram of compound 6 in its pure state
(Gradient system: from 90/10% until 10/90% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

HRMS characterization of compound 6:

![HRMS spectrum of compound 6](image)

Fig. S34 HRMS of compound 6 (799.8676 [M+2H]$^{2+}$; 535.5806 [M+3H]$^{3+}$)

4. Purification and characterization of compound 22

The synthesis of compound 22 was based on the peptide [D-Lys]6-GnRH (Fig. S35) which was synthesized with SPPS, purified via RP-HPLC (Fig. S36) and characterized with ESI-MS (Fig. S37).

Structure of peptide [D-Lys]6-GnRH:
Fig. S35 Structure of peptide [D-Lys]6-GnRH

Purification of peptide [D-Lys]6-GnRH:

Fig. S36 RP-HPLC chromatogram of peptide [D-Lys]6-GnRH (Gradient system: from 85/15% until 55/45% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 20 mins at 214 nm).

Mass characterization of peptide [D-Lys]6-GnRH:
Fig. S37 ESI-MS spectrum of peptide [D-Lys]6-GnRH (628.4 [M+2H]$^{2+}$; 419.2 [M+3H]$^{3+}$)

The structure, RP-HPLC chromatogram, mass and 1H-NMR spectra of compound 22 are illustrated in **Fig. S38**, **Fig. S39**, **Fig. S40** and **Fig. S41** respectively:

Structure of compound 22:

![Structure of compound 22](image)

Fig. S38 Structure of compound 22.

Purification of compound 22:
Fig. S39 RP-HPLC chromatogram of the purification of compound 22 (Gradient system: from 85/15% until 55/45% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

Mass characterization of compound 22:

Fig. S40 HRMS spectrum of compound 22 (725.4117 [M+2H]$^{2+}$; 483.9434 [M+3H]$^{3+}$)
1H-NMR characterization of compound 22:

![1H-NMR spectrum of compound 22 in DMSO-d\textsubscript{6} at 298K](image)

5. Purification and characterization of compound 23

The synthesis of compound 23 was based on the peptide Fmoc-HER2-BP1 (Fig. S42) which was synthesized with SPPS, purified via RP-HPLC (Fig. S43) and characterized with ESI-MS (Fig. S44).

Structure of peptide Fmoc-HER2-BP1:
Fmoc-HER2-BP1

Fig. S42 Structure of peptide Fmoc-HER2-BP1.

Purification of peptide Fmoc-HER2-BP1:

![RP-HPLC chromatogram](image)

Fig. S43 RP-HPLC chromatogram of the purification of peptide Fmoc-HER2-BP1. (Gradient system: from 80/20% until 20/80% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

Mass characterization of peptide Fmoc-HER2-BP1:

![ESI-MS spectrum](image)

Fig. S44 ESI-MS spectrum of peptide Fmoc-HER2-BP1 (1087.7 [M+H]$^+$; 563.5 [M+H+K]$^{2+}$; 359.4 [M+3H]$^{3+}$)
The structure, RP-HPLC chromatogram, mass and 1H-NMR spectra of compound 23 are illustrated in Fig. S45, Fig. S46, Fig. S47 and Fig. S48 respectively:

Structure of compound 23:

![Compound 23](image)

Fig. S45 Structure of compound 23.

Purification of compound 23:

![RP-HPLC chromatogram](image)

Fig. S46 RP-HPLC chromatogram of the purification of compound 23 (Gradient system: from 80/20% until 20/80% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).
Mass characterization of compound 23:

![Fig. S47 ESI-MS spectrum of compound 23 (1185.7 [M+H]^+; 594.1 [M+2H]^2+)](image)

1H-NMR characterization of compound 23:

![Fig. S48 1H-NMR spectrum of compound 23 in DMSO-d_6 at 298K](image)

6. Purification and characterization of compounds 24 and 25

The synthesis of compounds 24 and 25 were based on the dipeptides Fmoc-Cys-Tyr-NH_2 and Fmoc-Ser-Tyr-NH_2 respectively (Fig. S49) which were synthesized with SPPS, purified via RP-HPLC (Fig. S50/S51) and characterized with ESI-MS (Fig. S52/S53).
Structures of dipeptides Fmoc-Cys-Tyr-NH₂ and Fmoc-Ser-Tyr-NH₂:

![Structures of dipeptides Fmoc-Cys-Tyr-NH₂ and Fmoc-Ser-Tyr-NH₂](image)

Fig. S49 Structures of dipeptides Fmoc-Cys-Tyr-NH₂ and Fmoc-Ser-Tyr-NH₂

Purification of dipeptides Fmoc-Cys-Tyr-NH₂ and Fmoc-Ser-Tyr-NH₂:

Fig. S50 RP-HPLC chromatogram of the purification of dipeptide Fmoc-Cys-Tyr-NH₂ (Gradient system: from 90/10% until 30/70% of H₂O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

Fig. S51 RP-HPLC chromatogram of the purification of dipeptide Fmoc-Ser-Tyr-NH₂ (Gradient system: from 80/20% until 40/60% of H₂O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).
Mass characterization of dipeptides Fmoc-Cys-Tyr-NH₂ and Fmoc-Ser-Tyr-NH₂:

Fig. S52 ESI-MS spectrum of dipeptide Fmoc-Cys-Tyr-NH₂ (528.2 [M+2H+Na]^{3+}; 381.3 [M+3H+Na]^{4+})

Fig. S53 ESI-MS spectrum of dipeptide Fmoc-Ser-Tyr-NH₂ (512.9 [M+2H+Na]^{3+}; 349.8 [M+3H+Na]^{4+})

The structures, RP-HPLC chromatogram, mass and ¹H-NMR spectra of compounds 24 and 25 are illustrated in Fig. S54, Fig. S55/S56, Fig. S57/S58 and Fig. S59/S60 respectively:

Structures of compounds 24 and 25:
Purification of compounds 24 and 25:

Fig. S54 Structures of compounds 24 and 25

Fig. S55 RP-HPLC chromatogram of the purification of compound 24 (Gradient system: from 90/10% until 30/70% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

Fig. S56 RP-HPLC chromatogram of the purification of compound 25 (Gradient system: from 80/20% until 40/60% of H$_2$O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).
Mass characterization of compounds 24 and 25:

![ESI-MS spectrum of compound 24 (353.1 \([\text{M+2H}]^{2+}\))](image1)

\[\text{g. S57 ESI-MS spectrum of compound 24 (353.1 [M+2H]^{2+})}\]

![ESI-MS spectrum of compound 25 (589.5 [M+H]+)](image2)

\[\text{g. S58 ESI-MS spectrum of compound 25 (589.5 [M+H]^+)}\]

\(^1\text{H-NMR characterization of compounds 24 and 25:}\]
Fig. S59 1H-NMR spectrum of compound 24 in DMSO-d$_6$ at 298K

Fig. S60 1H-NMR spectrum of compound 25 in DMSO-d$_6$ at 298K
7. Purification and characterization of compound 26

The synthesis of compound 26 was based on the peptide C1B5_{141-151} (Fig. S61) which was synthesized with SPPS, purified via RP-HPLC (Fig. S62) and characterized with ESI-MS (Fig. S63).

Structure of peptide C1B5_{141-151}:

![Structure of peptide C1B5_{141-151}](image)

Fig. S61 Structure of the peptide C1B5_{141-151}

Purification of peptide C1B5_{141-151}:

![RP-HPLC chromatogram](image)

Fig. S62 RP-HPLC chromatogram of the purification of peptide C1B5_{141-151} (Gradient system: from 90/10% until 30/70% of H₂O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).
Mass characterization of peptide C1B5_{141-151}:

![ESI-MS spectrum of the peptide C1B5_{141-151} (700.7 [M+2H]^2+)](image)

Fig. S63 ESI-MS spectrum of the peptide C1B5_{141-151} (700.7 [M+2H]^2+)

The structure, RP-HPLC chromatogram and mass spectrum of compound 26 are illustrated in **Fig. S64, Fig. S65** and **Fig. S66** respectively:

Structure of compound 26:

![Structure of compound 26](image)

Fig. S64 Structure of compound 26

Purification of compound 26:
Fig. S65 RP-HPLC chromatogram of the purification of compound 26 (Gradient system: from 98/2% until 50/50% of H₂O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

Mass characterization of compound 26:

![Mass spectrum of compound 26](image)

Fig. S66 ESI-MS spectrum of compound 26 (400.1 [M+4H]⁴⁺)

8. Purification and characterization of compound 27

The structure, RP-HPLC chromatogram, mass and ¹H-NMR spectra of compound 27 are illustrated in Fig. S67, Fig. S68, Fig. S69 and Fig. S70 respectively:
Fig. S67 Structure of compound 27

Fig. S68 RP-HPLC chromatogram of the purification of compound 27 (Gradient system: from 70/30% until 0/100% of H₂O+0.1%TFA/MeCN+0.1%TFA, in 30 mins at 214 nm).

Fig. S69 ESI-MS spectrum of compound 27 (193.3 [M+H]⁺)
9. Mass characterization of expected compounds 28 (uronium) and 29 (guanidinium).

Compound 28

![Structure of Compound 28]

Molecular Weight: 573.67

Compound 29

![Structure of Compound 29]

Molecular Weight: 572.66

Fig. S71 Structures of expected compounds 28 (uronium) and 29 (guanidinium).
FIG. S72 Mass spectrum of compound 28 (574.00 [28+H]^+)