Supporting Information

Synthesis of 3D Porous MoS$_2$/g-C$_3$N$_4$ Heterojunction as a High Efficiency Photocatalyst for Boosting H$_2$ Evolution Activity

Youzhi Cao, a Qin Gao, c Qiao Li, a Xinbo Jing, a Shufen Wang b and Wei Wang a

a. School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
b. College of Sciences, Shihezi University, Shihezi 832003, China.
c. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi’an 710127, P.R. China.

wangwei_group@sina.com
Fig. S1 the spectrum of CEL-HXF300+CUT400

Fig. S2 XRD patterns of the MoS$_2$
Fig. S3 N_2 adsorption/desorption isotherms of the g-C_3N_4 and BPMCN samples.

Fig. S4 Pore size distribution curves of the g-C_3N_4 and BPMCN samples.
Table S1 BET specific surface area and pore volume of the g-C$_3$N$_4$ and BPMCN samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>g-C$_3$N$_4$</th>
<th>BPMCN-0.25</th>
<th>BPMCN-0.7</th>
<th>BPMCN-1.8</th>
<th>BPMCN-2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET (m2g$^{-1}$)</td>
<td>4.48</td>
<td>23.084</td>
<td>31.923</td>
<td>25.735</td>
<td>20.582</td>
</tr>
<tr>
<td>Pore Volume (cm3g$^{-1}$)</td>
<td>0.0257</td>
<td>0.168</td>
<td>0.1915</td>
<td>0.1588</td>
<td>0.1411</td>
</tr>
</tbody>
</table>

Fig. S5 XPS valence band spectra of the as-prepared catalysts