Supporting File

Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars
Dinesh Guptaa,b, Ejaz Ahmada, Kamal K. Pant*a, Basudeb Saha*b,c
aDepartment of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India
bDepartment of Chemistry, University of Delhi, 110007, India
cCatalysis Centre for Energy Innovation, University of Delaware, Newark, DE 19716, USA
Corresponding Author: email: kkpant@chemical.iitd.ac.in, basudeb_s@hotmail.com

Figure S1: 1H-NMR of HMF from glucose in CDCl\textsubscript{3}. Reaction condition: Glucose =10 mmol, PA =1.2 mmol, solvent =10 mL (Water +MIBK 1:4) at 140 \textdegree C
Figure S2: 1H NMR of one-pot synthesis of HMF and LA from glucose, close view, show two triplets and one singlet characteristic pick of LA in CDCl$_3$. Other reaction condition: Glucose =10 mmol, PA =1.2 mmol, t=6 h, solvents= 10 mL, (1:4 Water + MIBK). 180 °C
Figure S3: 1H NMR of one-pot synthesis of HMF and LA from glucose, close view, show two triplets and one singlet characteristic pick of LA in CDCl$_3$ and formylation of HMF in presence of formic acid as by product. Other reaction condition: Glucose =10 mmol, PA =1.2 mmol, t=6 h, solvents= 10 mL, (1:4 Water +MIBK). 180 °C
Figure: S4. 1H-NMR spectra of furfural in CDCl₃, synthesis from furfural. Reaction condition

Figure: S5 UV-visible spectrum of phenol-sulphonic acid experiment, calculating total reducing sugar.
Figure S6: Four point calibration plot of standard Glucose

Figure S7: Blank experiment, 1H NMR (CDCl$_3$), Glucose = 10 mmol, T = 140 °C, t= 6 h.
Figure S8: Time dependent dehydration of Glucose to HMF, change of product color show as time of reaction increase, other reaction condition: Glucose = 10 mmol, PA = 1.2 mmol, solvent = 10 mL (water + MIBK, 1:4), Temperature = 140 °C.