Supporting information

Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules

Nan Li¹, Changmei Cheng*,², Hainan Wei², Hongbin Liu³, Xiaosong Li³, Wenzhe Li⁴, Liduo Wang*¹

¹Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
²Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
³Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States
⁴Institute of New Energy Technology, College of Information and Technology, Jinan University, Guangzhou 510632, China

Corresponding Authors

*E-mail: (C. C.) chengcm@mail.tsinghua.edu.cn
*E-mail: (L. W.) chldwang@mail.tsinghua.edu.cn
Fig. S1 (a-e) The top-view SEM images and (f-g) corresponding AFM images of perovskite films with and without interfacial treatment. The scale bars represent 500 nm.

Fig. S2 The contact angles of water on perovskite films.

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>69.9°</td>
</tr>
<tr>
<td>C₉</td>
<td>74.2°</td>
</tr>
<tr>
<td>C₁₃</td>
<td>74.0°</td>
</tr>
<tr>
<td>C₁₅</td>
<td>74.1°</td>
</tr>
<tr>
<td>C₁₇</td>
<td>73.8°</td>
</tr>
</tbody>
</table>
Fig. S3 XRD spectra of perovskite films before and after stored in 50–60% RH atmosphere under AM1.5G illumination.

Table S1. The detailed photovoltaic parameters of the best performed devices.

<table>
<thead>
<tr>
<th></th>
<th>J_{sc}/mA cm$^{-2}$</th>
<th>V_{oc}/V</th>
<th>FF/%</th>
<th>PCE/%</th>
<th>SPO/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>20.8</td>
<td>1.05</td>
<td>73.2</td>
<td>16.0</td>
<td>15.4</td>
</tr>
<tr>
<td>C$_9$</td>
<td>21.9</td>
<td>1.07</td>
<td>73.0</td>
<td>17.1</td>
<td>16.9</td>
</tr>
<tr>
<td>C$_{13}$</td>
<td>22.4</td>
<td>1.08</td>
<td>74.6</td>
<td>18.1</td>
<td>17.8</td>
</tr>
<tr>
<td>C$_{15}$</td>
<td>22.1</td>
<td>1.06</td>
<td>74.2</td>
<td>17.4</td>
<td>17.0</td>
</tr>
<tr>
<td>C$_{17}$</td>
<td>21.6</td>
<td>1.05</td>
<td>73.9</td>
<td>16.8</td>
<td>16.1</td>
</tr>
</tbody>
</table>
Fig. S4 The time-resolved PL spectra of the glass/perovskite/PC$_{61}$BM films with and without the interfacial treatment between perovskite and PC$_{61}$BM.

Fig. S5 The c-AFM images of the ITO/perovskite films with and without the interfacial treatment. The mapping area is 1 μm×1 μm.
Fig. S6 The moisture and light-stability test for the control devices and the analogues treated with alkyl bisphosphonic molecules in 50~60%RH atmosphere under AM1.5G illumination. The PCE was averaged form 5 devices for each condition.

Theoretical calculation of the alkyl bisphosphonic molecules passivation

The $\text{MA}_3\text{Pb}_4\text{I}_{16}^+$ cluster is extracted from the MAPbI$_3$ crystal structure1. In the cluster model, there are 4 vacant X site exposed on the surface. We assume the oxygen on the P=O bond of the alkyl bisphosphonic molecules will attached to the exposed X site, passivating the Pb atoms. The geometries of the perovskite cluster attached with the alkyl bisphosphonic molecules (C_9, C_{13}) are optimized using PBE1PBE density functional2 along with the Los-Alamos double-ζ pseudopotential basis set3 in Gaussian 16 program. The position of MAPbI$_3$ is kept fixed during the optimization.

Synthesis of the alkyl bisphosphonic molecules

(1) Synthesis route

\[
\begin{align*}
\text{Br-CH}_3 & \quad \xrightarrow{a} \quad (i\text{-PrO})_2P \quad \xrightarrow{b} \quad (\text{HO})_2P \\
\text{C}_n & \quad \text{C}_9: n=7, \; \text{C}_{13}: n=11, \; \text{C}_{15}: n=13, \; \text{C}_{17}: n=15
\end{align*}
\]

(2) Experimental procedure4

Trideca-1,1-diylbisphosphonic acid C_{13} was prepared by the following prosedre. A mixture of tetraisopropyl methylenebisphosphonate (6.88 g, 20.0 mmol) and dry THF (20 mL) was added dropwise to a solution of NaH (1.10 g, 60% in oil, 27.5 mmol) in dry THF (50 mL) followed by stirring under an argon atmosphere at room temperature for 0.5 h. 1-Bromododecane (4.98 g, 20 mmol) in dry THF (20 ml) was added gradually and the mixture was maintained reflux for 24 h. Water was added to
the cooled mixture, the product was extracted with DCM, dried over MgSO$_4$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography. In the next step, the isopropyl protecting groups were removed by refluxing in concentrated hydrochloric acid 24 h yielding C$_{13}$ (1.50 g, 21.8%) as a white solid. ESI-MS m/z 345 [M+1]$^+$. 1H NMR (600 HZ, DMSO): δ1.97 (t, 1H), 1.71 (m, 2H), 1.45 (m, 2H), 1.25-1.21 (m, 18H), 0.84 (m, 3H). 13C NMR (150HZ, DMSO): δ31.83, 30.55, 29.61~29.25 (9C), 22.62, 14.47. 31P NMR: δ22.17. The compound C$_9$, C$_{15}$, C$_{17}$, were prepared as C$_{13}$ from corresponding bromoalkane to give as white solid.

Nonane-1,1-diylidiphosphonic acid C$_9$, yielding (18.1%). ESI-MS m/z 289 [M+1]$^+$. 1H NMR (600 HZ, DMSO): δ1.91 (t, 1H), 1.69 (m, 2H), 1.46 (m, 2H), 1.24 (m, 10H), 0.86 (m, 3H). 13C NMR (150HZ, DMSO): δ31.84, 30.66, 29.39~29.26 (5C), 22.64, 14.49. 31P NMR: δ22.04.

Pentadecane -1,1-diylidiphosphonic acid C$_{15}$, yielding (22.0%). ESI-MS m/z 373[M+1]$^+$. 1H NMR (600 HZ, DMSO): δ1.92 (t, 1H), 1.72 (m, 2H), 1.46(m, 2H), 1.18 (m, 24H), 0.84 (m, 3H). 13C NMR (150 HZ, DMSO): δ31.47, 29.27~28.89 (12C), 22.25, 14.03. 31P NMR: δ21.92.

Heptadecane-1,1-diylidiphosphonic acid C$_{17}$, yielding (25.6%). ESI-MS m/z 401[M+1]$^+$. 1H NMR (600 HZ, DMSO): δ1.93 (t, 1H), 1.73 (m, 2H), 1.46 (m, 2H), 1.23 (m, 28H), 0.83 (m, 3H). 13C NMR (150HZ, DMSO): δ31.43, 29.23~28.85 (14C), 22.22, 14.03. 31P NMR: δ22.18.

Characterization of the alkyl bisphosphonic molecules by NMR spectra
C_9

13C NMR (150 Hz, DMSO)

C_9

31P NMR
C_{13}

1H NMR (600 HZ, DMSO)

C_{13}

^{13}C NMR (150 HZ, DMSO)
C_{13}

^{31}P NMR

C_{15}

^{1}H NMR (600 HZ, DMSO)
C_{15}

13C NMR (150 Hz, DMSO)

C_{15}

31P NMR
C_{17}

^{1}H NMR (600 HZ, DMSO)

C_{17}

^{13}C NMR (150 HZ, DMSO)
References: