Electronic supplementary information (ESI):

Steric effect on Li+ coordination and transport properties in polyoxetane-based polymer electrolytes bearing nitrile groups

Ryansu Sai,1 Kazuhide Ueno,2* Kenta Fujii,1 Yohei Nakano,1,3 Hiromori Tsutsumi1*

1Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, 755-8611, Japan

2 Department of Chemistry and Biotechnology, Graduate School of Sciences and Technology for Innovation, Yokohama National University, 79-5 Tokiwadai, Hodogaya–ku, Yokohama, 240-8501, Japan

Present address: 3 Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
Figure S1. Estimated molar conductivity (Λ_{est}) of the PEs as a function of LiTFSA content ($1/\alpha = [\text{Li salt}]/[\text{monomer unit}]$) at 30 °C and 70 °C. The Λ_{est} values were calculated by dividing the conductivity at each temperature by c_{Li} at room temperature.

Figure S2. Temperature dependencies of the ionic conductivity for (a) PCHO$_2$LiTFSA and (b) PCEO$_2$LiTFSA. The solid lines represent the Vogel-Tammann-Fulcher fit results.
Figure S3. Data for various electrochemical measurements used to calculate the transference number of PCEO$_5$LiTFSA at 50 °C. (a) Current with respect to time and (b) Nyquist plots of the initial (R_0) and steady state (R_{ss}).

Figure S4. Data for various electrochemical measurements used to calculate the transference number of PCHO$_5$LiTFSA at 50 °C. (a) Current with respect to time and (b) Nyquist plots of the initial (R_0) and steady state (R_{ss}).
Figure S5. Charge/discharge curves of a Li/PCEO₂LiTFSA/LiFePO₄ cell at a 0.05 C rate and 70 °C. The measurements were carried out in a range of 2.5–4.0 V (1 C = 117 μA, 149 μA cm⁻²).