Supporting Information

Multiparameter investigation of bulk heterojunction organic photovoltaics

Chiara Musumeci,a Riccardo Borgani,b Jonas Bergqvist,a Olle Inganäs,a David Haviland,b

aBiomolecular and Organic Electronics, IFM, Linköping University, 58183 Linköping, Sweden.
bNanostructure Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
e-mail: oling@ifm.liu.se; haviland@kth.se.

Comparison of multiple quantities

Figure S1. Comparison of multiple quantities measured on the same area of a TQ1:PCBM blend deposited on ZnO/ITO from toluene: (a-e) height images; (f) contact potential in dark and (g) in light; (h) dark current measured at a bias of -2V applied to the ITO electrode; (i) photocurrent measured at 0V bias; (l) elastic modulus map.
Determination of contact area

The contact area between tip and sample was determined based on Hertz model describing the contact between a sphere and a half-space.

For small indentations the contact area is:

\[A = 2\pi r_{tip} \left(r_{tip} - \sqrt{r_{tip}^2 - r_c^2} \right), \]

where \(r_{tip} \) is the probe radius, \(r_c \) the contact radius, and \(\left(r_{tip} - \sqrt{r_{tip}^2 - r_c^2} \right) = \frac{r_c^2}{r_{tip}} = h \) is the indentation depth.

The contact radius is:

\[r_c = \sqrt{\frac{3F r_{tip}}{4 E^*}}, \]

being \(F \) the load force and the reduced modulus \(E^* = \left(\frac{1-v_s^2}{E_s} + \frac{1-v_{tip}^2}{E_{tip}} \right)^{-1} \), with \(v_s \) and \(v_{tip} \) the Poisson ratios and \(E_s \) and \(E_{tip} \) the elastic modulus of sample and tip, respectively.

Assuming \(E_{tip} \to \infty \) and a Poisson ratio of 0.35,\(^2\) we estimate the following contact areas corresponding to the current maps in Fig 2 and Fig 5 for applied load forces of 10 nN.

<table>
<thead>
<tr>
<th>Probe (Figure)</th>
<th>(r_{tip})</th>
<th>(r_c)</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ElectriCont-G (Figure 2)</td>
<td>25 nm</td>
<td>5.2 nm</td>
<td>167 nm(^2)</td>
</tr>
<tr>
<td>HQ:DPE-XSC11/C (Figure 5)</td>
<td>40 nm</td>
<td>6.0 nm</td>
<td>228 nm(^2)</td>
</tr>
</tbody>
</table>

Table S1. Tip radius (\(r_{tip} \)), contact radius (\(r_c \)) and contact area (\(A \)) of the different probes used for current mapping in C- and QI-mode.

Current density maps

Figure S2. Current density maps (mA/cm\(^2\)) in dark (a) and upon light irradiation (b) calculated from the current maps in Figure 2, considering a tip-sample contact area of 167 nm\(^2\).
Figure S3. Current density maps (mA/cm\(^2\)) in dark (a) and upon light irradiation (b) calculated from the current maps in Figure 5, considering a tip-sample contact area of 228 nm\(^2\).

References