Supporting Information

Tuning the transport and magnetism in Cr-Bi\textsubscript{2}Se\textsubscript{3} Topological Insulator by Sb doping†

Y. Tunga,*,, C. W. Chonga, *, C. W. Liaoa, C. H. Changa, S. Y. Huanga, P. Y. Chuanga, M. K. Leeb, C. M. Chengc, Y. C. Lid, C. P. Liud, and J. C. A. Huanga,c,f

aDepartment of Physics, National Cheng Kung University, Tainan 70101, Taiwan.
bNSC Instrument Center at NCKU, Tainan 70101, Taiwan.
cNational Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
dDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
eAdvanced Optoelectronic Technology Center (AOTC), National Cheng Kung University Tainan 70101, Taiwan.
fTaiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei 10622, Taiwan.

* Y. Tung and C. W. Chong contributed equally to this work.
Email: cheongwei2000@yahoo.com and jcahuang@mail.ncku.edu.tw
† Electronic Supplementary Information (ESI)

Figure S1

Figure S1 (a)-(d) display the RHEED pattern of various samples and (e)-(h) show the corresponding surface morphology that was analyzed by AFM. Without Cr
and Sb doping, the Bi₂Se₃ shows normal scale terraces. The surface of each films consists of characteristic triangular-shaped terraces and each roughness is around 1nm, reflecting the crystal structure still remains a fully tradition appearance of Bi₂Se₃. The width of the terraces decreases with increasing the doping of Sb and Cr. While codoped Sb and Cr samples exhibit surface roughness \(R_q \sim 0.912 \) nm. The obvious reduction of terrace width may indicate the evidence of Cr and Sb substitution into Bi site.

Figure S2

Sheet resistance \(R_s \) measured at 2K using physical property measurement system (PPMS).

<table>
<thead>
<tr>
<th>x in Cr-doped ((\text{Bi}, \text{Sb})_x \text{Se}_3)</th>
<th>(R_s) (Ohm)</th>
<th>(k_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1478.3</td>
<td>~17</td>
</tr>
<tr>
<td>0.35</td>
<td>13715.9</td>
<td>~2</td>
</tr>
</tbody>
</table>

Figure S3

Fitting of MC curves using Hikami-Larkin-Nagoka formula:

\[
\Delta \sigma = \alpha \frac{e^2}{\pi \hbar} \left[\psi \left(\frac{1}{2} + \frac{B \varphi}{B} \right) - \ln \left(\frac{B \varphi}{B} \right) \right]
\]

where \(\alpha \) is a coefficient indicating the type of localization (\(\alpha \) is positive for weak localization and negative for weak anti-localization), \(\psi \) is digamma function, and \(B \varphi = \hbar/4e l^2_p \) is characteristic field with \(l^2_p = (D \tau_p)^{1/2} \) is the phase coherent length, \(\tau_p \) is the phase coherent time and \(D \) is diffusion constant.
Figure S3 (a) The MC curves of Bi$_2$Se$_3$, (Bi$_{0.65}$Sb$_{0.35}$)$_2$Se$_3$, (Bi$_{0.93}$Cr$_{0.07}$)$_2$Se$_3$ and (Bi$_{0.58}$Cr$_{0.07}$Sb$_{0.35}$)$_2$Se$_3$ are fitted with HLN equation; (b) & (c) illustrate the extracted α and l_ρ.

Figure S4
The out-of-plane magnetic properties of (Cr, Bi)$_2$Se$_3$ (Cr-BS) and Sb-doped (Cr, Bi)$_2$Se$_3$ (Cr-BSS) were measured by SQUID magnetometer at 2K. It’s difficult to resolve the magnetic signal owing to the small amount of Cr doping level ($y=0.07$), Thus, for this SQUID measurement, we used thicker sample (80 QLs) with higher Cr concentration than that shown in the manuscript.

As shown in Fig. S4, both Cr-BS and Cr-BSS exhibit nonlinear magnetization as a function of magnetic fields. However, Sb-doped Cr-BS clearly presents significant larger magnetic moment than that of non-Sb-doped case. Such nonlinear curve reveals similar features as AHE, which confirms the non-linear Hall effect indeed induced by the magnetism.

Although the used samples are different from those in the manuscript, with this experiments, we demonstrate the positive role of Sb-doping in enhancing the magnetism in Cr-BS at a fix Cr content.
Figure S4 M-H loop of the 80QL (Cr, Bi)$_2$Se$_3$ and Sb-doped (Cr, Bi)$_2$Se$_3$ measured at B-field applied perpendicular to sample plane at 2K.