Supporting Information for:

MoO$_3$ Subnanoclusters on Ultrasmall Mesoporous Silica Nanoparticles: An Efficient Catalyst for Oxidative Desulfurization

Jiasheng Wang, Wenpei Wu, Hongyang Ye, Yahong Zhao, Wan-Hui Wang, Ming Bao *

State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China

Corresponding Author

E-mail: mingbao@dlut.edu.cn
Figure S1. (a) The JCPDS card of MoO$_3$; (b) the XRD pattern of subnano-MoO$_3$/UMSN.

Figure S2. N$_2$ adsorption-desorption isotherms of catalyst (a) C-1, (b) C-2, and (c) C-3.
Figure S3. N$_2$ adsorption-desorption isotherm and pore size distribution of meso-SiO$_2$.

1H NMR (500 MHz, Chloroform-d) δ7.82 (dd, J= 14.7, 7.6 Hz, 4H), 7.65 (td, J= 7.6, 1.2 Hz, 2H), 7.54 (td, J= 7.6, 1.0 Hz, 2H).

Figure S4. The 1H NMR spectrum of DBTO$_2$.
Table S1. ODS conversion of different substrates catalyzed by C-1.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>DBT conversion%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>99.2</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>99.6</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

\(^a\): [cat.]/[S] = 0.075, [O]/[S] = 6, 70 °C, 15 min.

Figure S5. The variation of DBT conversion with runtimes for C-2 and C-3.