Water-soluble fluorescent hybrid material based on aminoclay and its bioimaging application

Qing-Feng Li a,b, Zengchen Liu a,b, Lin Jin a,b, Piaoping Yang c,* and Zhenling Wang a,b,*

a The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou, Normal University, Zhoukou 466001, P. R. China. Email: zlwang2007@hotmail.com

b International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou 466001, P. R. China.

c Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China. E-mail: yangpiaoping@hrbeu.edu.cn

\textbf{Fig. S1} 1H-NMR (a) and 13C-NMR (b) spectra of NDPA, Solvent: Deuterated dimethyl-sulfoxide (DMSO-\textit{d}6).
Fig. S2 Mass spectroscopy of NDPA

Fig. S3 Excitation spectrum of AC-NDPA in aqueous solution monitored at 503 nm (1 mg mL$^{-1}$).

Fig. S4 Fluorescence lifetime curves of AC-NDPA solution, red line: reference curve.
Fig. S5 Effect of pH value (a), time (b) and NaCl concentration (c) on the fluorescence intensity of AC-NDPA (1 mg mL\(^{-1}\)).

Fig. S6 XRD patterns of AC and AC-NDPA.