ESI for

Poly(N-isopropylacrylamide-co-L-proline)-catalyzed Claisen-Schmidt and Knoevenagel condensations: unexpected enhanced catalytic activity of the polymer catalyst

Hao Zhang,‡ab Mengting Han,‡ab Tian Chen, Lin Xuab and Lei Yu*ab

aInstitute of Pesticide, School of Chemistry and Chemical Engineering and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225002, China

bJiangsu Yangnong Chemical Group Co. Ltd., Yangzhou, Jiangsu 225002, China

‡H. Z. and M. H. contributed equally

* Corresponding author

Email: yulei@yzu.edu.cn.

Table of Contents

Condition optimizations..S2

Original 1H NMR spectra of benzaldehyde in mechanism study experiments.............S5

GC data and spectra of the polymer absorption test...S9

NMR Spectra of the products..S11
S1 Condition optimizations

Table S1. Screenings of the catalyst and additive.\(^a\)

\[
\begin{array}{cccc}
\text{Entry} & \text{Catalyst} & \text{Additive} & \text{Yield} \\
\hline
1 & L-Proline & - & 44 \\
2 & L-Proline & 1-Methylpiperazine & 55 \\
3 & L-Proline & Morpholine & 61 \\
4 & L-Proline & Pyrrolidine & 49 \\
5 & L-Proline & Piperazine & 70 \\
6 & L-Proline & Et₂NH & 36 \\
7 & L-Proline & (i-Pr)₂NH & 34 \\
8 & L-Proline & Pyridine & 32 \\
9 & L-Proline & Et₃N & 28 \\
10 & L-Proline & 1-Methylpiperidine & 43 \\
11 & L-Proline & PhNH₂ & 48 \\
12 & - & Piperazine & 15 \\
13 & L-Cysteine & Piperazine & 29 \\
14 & L-Histidine & Piperazine & 22 \\
15 & L-Arginine & Piperazine & 12 \\
16 & L-Norvaline & Piperazine & 52 \\
\end{array}
\]

\(^{a}\) Yields are reported as average of three independent experiments.

\(^{b}\) Reaction conditions: \(1\)a + \(2\) \(\xrightarrow{\text{catalyst (5 mol %)}}\) \(3\)a. Reaction carried out in EtOH, 20 °C, 48 h, \(N₂\).
17 5-Aminopentanoic acid Piperazine 17
18 Piperidine-2-carboxylic acid Piperazine 25
19 Pyrrolidine-3-carboxylic acid Piperazine 32

\(^a\)1 mmol of \(1a\), 3 mmol of acetone and 1 mL of EtOH were employed.

\(^b\)Isolated yields of \(3a\) based on \(1a\).

Table S2. Condition optimizations.\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>(2/1a^b)</th>
<th>Cat(^c)</th>
<th>(T)</th>
<th>Yield (^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EtOH</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>EtOH/H(_2)O (4:1)</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>EtOH/H(_2)O (1:1)</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>MeOH</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>(i)-PrOH</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>(t)-BuOH</td>
<td>3</td>
<td>5</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Acetone</td>
<td>-</td>
<td>5</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>Acetone/EtOH (90:10)</td>
<td>-</td>
<td>5</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>EtOH</td>
<td>2</td>
<td>5</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>EtOH</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>EtOH</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>58</td>
</tr>
<tr>
<td>12</td>
<td>EtOH</td>
<td>3</td>
<td>0</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>EtOH</td>
<td>3</td>
<td>10</td>
<td>20</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>EtOH</td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>EtOH</td>
<td>3</td>
<td>5</td>
<td>40</td>
<td>67</td>
</tr>
</tbody>
</table>

\(^a\) 1 mmol of 1a, and 1 mL of solvent were employed.

\(^b\) Molar ratio of acetone vs. 1a.

\(^c\) Catalyst amount (mol %) based on 1a.

\(^d\) Reaction temperature.

\(^e\) Isolated yields of 3a based on 1a.
S2 Original 1H NMR spectra of benzaldehyde in mechanism study experiments

Instruction: The original spectra were given here to confirm that the chemical shifts of aldehyde-H were referred to the internal standard Me$_4$Si at 0 ppm. Although the solubility of L-proline was low in CDCl$_3$, it obviously affected the chemical shift of the aldehyde-H, which moved to the low field region (from 10.028 ppm to 10.030 ppm).

S3.1 Without L-proline (CDCl$_3$, 400 MHz; aldehyde-H at 10.028 ppm; Me$_4$Si at 0 ppm)
S3.2 After adding L-proline (CDCl₃, 400 MHz; aldehyde-H at 10.030 ppm; Me₄Si at 0 ppm)
S3.3 Without L-proline (Methanol-D₄, 400 MHz; aldehyde-H at 9.989 ppm; Me₄Si at 0 ppm)
S3.4 After adding L-proline (Methanol-D$_4$, 400 MHz; aldehyde-H at 9.992 ppm; Me$_4$Si at 0 ppm)
S3 GC data and spectra of the polymer absorption test

S3.1 GC analysis data of the sample PhCHO/EtOH without polymer 8

1st time

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time/min</th>
<th>Peak wide/min</th>
<th>Peak area</th>
<th>%</th>
<th>PhCHO / EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>1.195</td>
<td>0.0399</td>
<td>792.13324</td>
<td>4.77030</td>
<td>0.05009</td>
</tr>
<tr>
<td>EtOH</td>
<td>0.645</td>
<td>0.0318</td>
<td>18516.6</td>
<td>95.22970</td>
<td></td>
</tr>
</tbody>
</table>

2nd time

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time/min</th>
<th>Peak wide/min</th>
<th>Peak area</th>
<th>%</th>
<th>PhCHO / EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>1.195</td>
<td>0.0373</td>
<td>793.18103</td>
<td>4.77037</td>
<td>0.05009</td>
</tr>
<tr>
<td>EtOH</td>
<td>0.645</td>
<td>0.0319</td>
<td>18318.2</td>
<td>95.22963</td>
<td></td>
</tr>
</tbody>
</table>

3rd time

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time/min</th>
<th>Peak wide/min</th>
<th>Peak area</th>
<th>%</th>
<th>PhCHO / EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>1.194</td>
<td>0.0361</td>
<td>769.51642</td>
<td>4.76944</td>
<td>0.05008</td>
</tr>
<tr>
<td>EtOH</td>
<td>0.645</td>
<td>0.0318</td>
<td>18123.6</td>
<td>95.23056</td>
<td></td>
</tr>
</tbody>
</table>

Average: 0.05009
S3.2 GC analysis data of the sample PhCHO/EtOH after adding polymer 8

1st time

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time/min</th>
<th>Peak wide/min</th>
<th>Peak area</th>
<th>%</th>
<th>PhCHO / EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>1.444</td>
<td>0.1059</td>
<td>667.29846</td>
<td>4.34212</td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>0.952</td>
<td>0.2125</td>
<td>9075.36621</td>
<td>95.65788</td>
<td>0.04539</td>
</tr>
</tbody>
</table>

2nd time

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time/min</th>
<th>Peak wide/min</th>
<th>Peak area</th>
<th>%</th>
<th>PhCHO / EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>1.224</td>
<td>0.0476</td>
<td>808.49634</td>
<td>4.27906</td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>0.674</td>
<td>0.0488</td>
<td>17106.3</td>
<td>95.72094</td>
<td>0.04470</td>
</tr>
</tbody>
</table>

3rd time

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time/min</th>
<th>Peak wide/min</th>
<th>Peak area</th>
<th>%</th>
<th>PhCHO / EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>1.202</td>
<td>0.0407</td>
<td>706.14410</td>
<td>4.28743</td>
<td></td>
</tr>
<tr>
<td>EtOH</td>
<td>0.654</td>
<td>0.0361</td>
<td>17985.0</td>
<td>95.71257</td>
<td>0.04479</td>
</tr>
</tbody>
</table>

Average: 0.04496

S4 NMR Spectra of the products
3a, CDCl₃, 600 MHz
3a, CDCl_3, 150 MHz
3b, CDCl₃, 600 MHz
3b, CDCl$_3$, 150 MHz
$3c$, CDCl$_3$, 400 MHz
3c, CDCl$_3$, 100 MHz
3d, CDCl₃, 600 MHz
3d, CDCl₃, 150 MHz
3e, CDCl$_3$, 600 MHz
$3e$, CDCl$_3$, 150 MHz
3f, CDCl₃, 600 MHz
3f, CDCl$_3$, 150 MHz
3g, CDCl₃, 400 MHz
$3g$, CDCl$_3$, 100 MHz
Cl

Me

$3h$, CDCl$_3$, 400 MHz
3h, CDCl₃, 100 MHz
3i, CDCl₃, 400 MHz
3i, CDCl₃, 100 MHz
$3j$, CDCl$_3$, 400 MHz
3j, CDCl₃, 100 MHz
3k, CDCl₃, 600 MHz
3l, CDCl₃, 400 MHz
HO-CH=CH-Me

$\text{31, CDCl}_3, 100 \text{ MHz}$
$\text{3m, CDCl}_3, 400 \text{ MHz}$
3m, CDCl$_3$, 100 MHz
$3n$, DMSO-d_6, 100 MHz
10a, CDCl$_3$, 400 MHz
10a, CDCl₃, 100 MHz
10b, CDCl$_3$, 400 MHz
10b, CDCl₃, 100 MHz
10c, CDCl$_3$, 400 MHz
$10c$, CDCl$_3$, 100 MHz
10d, CDCl$_3$, 600 MHz
$10d$, CDCl$_3$, 150 MHz
10e, CDCl$_3$, 600 MHz
10e, CDCl₃, 100 MHz
10f, CDCl₃, 400 MHz
10f, CDCl₃, 100 MHz