Supplementary Information

Enhanced Adsorption Capacity and Selectivity towards Strontium Ions in Aqueous Systems by Sulfonation of CO₂ Derived Porous Carbon

S. Baik,¹ H. Zhang,² Y. K. Kim,¹ D. Harbottle³† and J. W. Lee¹†

¹ Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea.

² School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.

† Corresponding Authors E-mail: jaewlee@kaist.ac.kr, D.Harbottle@leeds.ac.uk

Figure S1. SEM images for (a) PC and (b) PC-SO₃H.

Table S1. BET specific surface area for PC and PC-SO₃H.

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>PC-SO₃H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific surface area (m²/g)</td>
<td>470.97</td>
<td>299.99</td>
</tr>
</tbody>
</table>
Figure S2. (a) Nitrogen adsorption/desorption isotherm curve and (b) pore size distribution determined from a non-local density functional theory (NLDFT) method.

Figure S3. XPS (a) O1s spectra and (b) Sr3d spectra for PC and PC-SO$_2$H.