Supplementary Information (SI)

A high selectivity and sensitivity fluorescent chemosensor for Zn$^{2+}$

based on a diarylethene derivative

Erting Feng, Yayi Tu, Congbin Fan,* Gang Liu and Shouzhi Pu*

*Corresponding authors. Tel./fax: +0791 83805212 (C. Fan), +86 791 83831996 (S. Pu).

E-mail: congbinfan@163.com (C. Fan), pushouzhi@vip.163.com (S. Pu).
Fig. S1 The absorption spectrum of 1o, 1c and 1o'.
Fig. S2 Fatigue resistance of 1o (20 μM in THF) at room temperature.
Fig. S3 Variations of absorption intensity of 1o (20 μM) at 411 nm upon addition of Zn$^{2+}$ (0-1.3 equiv.)
Fig. S4 Fluorescence titration data at 515 nm between receptor 10 and Zn$^{2+}$ (0-1.2 equiv.).
Fig. S5 Job’s Plot of receptor 1o with Zn$^{2+}$ showing 1:1 stoichiometry.
Fig. S6 Hildebrand-Benesi plot based on the 1:1 ratio for 10 and Zn$^{2+}$, the binding constant is 2.27×10^4 M$^{-1}$.
Fig. S7 The limit of detection (LOD), LOD is 8.10×10^{-8} M.
Fig. S8 HRMS of receptor 1o with Zn$^{2+}$.
Fig. S9 1H NMR (CDCl$_3$, 400 MHz) spectrum of compound 3.
Fig. S10 13C NMR (CDCl$_3$, 100 MHz) spectrum of compound 3.
Fig. S11 Mass spectrum of compound 3.
Fig. S12 1H NMR (CDCl$_3$, 400 MHz) spectrum of compound 4.
Fig. S13 13C NMR (CDCl$_3$, 100 MHz) spectrum of compound 4.
Fig. S14 Mass spectrum of compound 4.
Fig. S15 1H NMR (CD$_2$Cl$_2$, 400 MHz) spectrum of compound 1o.
Fig. S16 13C NMR (CD$_2$Cl$_2$, 100 MHz) spectrum of compound 1o.
Fig. S17 Mass spectrum of compound 1o.