Supplementary Information

for

A Bifunctional Two Dimensional TM$_3$(HHTP)$_2$ monolayer and its variations for Oxygen Electrode Reactions

B. B. Xiaoa, H. Y. Liua, X. B. Jiangb, Z. D. Yua, Q. Jiangc

aSchool of Energy and Power Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

bSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

cKey Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

*Correspondence and requests for materials should be addressed to B. B. X. (email: xiaobb11@mails.jlu.edu.cn) and Q. J. (email: jiangq@jlu.edu.cn).
Figure S1. The partially density of states of Ni$_3$(HHTP)$_2$ and its variations. (a) is the un-adsorbed NiX$_4$. (b)-(c) are OOH, O and OH adsorption systems, respectively.
Figure S2. The partially density of states of Fe$_3$(HHTP)$_2$ and its variations. (a) is the un-adsorbed FeX$_4$. (b)-(c) are OOH, O and OH adsorption systems, respectively.