Electornic Supplementary Material

WO₃-EDA hybrid nanoplates and nanowires: Synthesis, characterization, thermal decomposition and application as catalyst

Dávid Hunyadi*, Eszter Majzik¹, Judit Mátyási¹, József Balla¹, Attila Domján², Ágnes Szegedi³, Imre M. Szilágyi¹,4

²NMR Laboratory, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Magyar tudósok körútja 2. Hungary
³Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Magyar tudósok körútja 2. Hungary

*E-mail address: david.hunyadi89@gmail.com

Figure S1. SEM images of the WO₃ precursors produced from APT (a-b) and HATB (c-d).
Figure S2. XRD patterns of intermediate samples obtained from precursor 2 (a), 3 (b) and 4 (c) at different reaction times.

Figure S3. XRD patterns of intermediate samples obtained from the reaction in the presence (a) and absence (b) of H\textsubscript{2}O vapor at different reaction times.

Figure S4. SEM images of the WO\textsubscript{3}-EDA hybrid, obtained from the wet chemical process using ethanol (a) and acetone (b) solvents.
Figure S5. TG/DTA curves of the WO$_3$-EDA hybrid obtained from the solid-gas phase reaction in nitrogen.

Figure S6. TG/DTA curves of the WO$_3$-EDA hybrid obtained from the solid-gas phase reaction in air.

Figure S7. GC-MS results of the evolved gases in nitrogen.
Figure S8. GC-MS results of the evolved gases in air.

Figure S9. TG curves of EDA in air and nitrogen.