Supplementary Information

Compositional dependence of ferromagnetic and magnetoelectric effect properties in BaTiO₃–BiFeO₃–LaFeO₃ solid solutions

Xiwei Qi¹,²,³*, Min Zhang¹*, Xiaoyan Zhang²,³, Yaohang Gu¹, Hongen Zhu², Weicheng Yang¹, Ying Li¹,⁴

¹School of Materials Science and Engineering, Northeastern University, Shenyang 110189, China
²School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
³Key Laboratory of Dielectric and Electrolyte Functional Materials Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
⁴School of science, Inner Mongolia University of Science and Technology, Baotou 014010, China

Corresponding authors:

Xiwei Qi: E–mail: qxw@mail.neuq.edu.cn
Min Zhang: E–mail: minzhang1992@126.com

Fig. S1 XRD refinement of the BT-BFO-xLFO (x = 0.1, 0.3, 0.4 and 0.5)
Fig. S2 Grain size distributions of the BT-BFO-\(x\)LFO (\(x = 0.1\)–0.5) ceramics sintered at 1300 °C.

Fig. S3 TEM images of BT-BFO-0.2LFO ceramics.
Fig. S4 depicts the frequency dependence of the complex permittivity of the as-prepared BT-BFO-xLFO ceramics. When the frequency increased more than 10^7 Hz, the data are stable, which exhibit good performances of frequency. It should be noted the dielectric resonant frequency don't appear in this study. It maybe appear the highest frequency beyond limitation of our present devices.

Fig. S5 (a) μ_i' and (b) μ_i'' of BT-BFO-xLFO ($x = 0.1–0.5$) ceramics sintered at 1300 °C

As shown in Fig. S5 (a), the value of μ_i' for all the compositions keep constant beyond 10^7 Hz. It is also seen from the figure that the value of μ_i' is increasing with LFO content up to $x = 0.4$ and then gradually decreases. The plot of μ_i'' as function of frequency is shown in Fig. S5(b). It is seen that μ_i'' of BT-BFO-xLFO
$(x = 0.1–0.5)$ keep constant beyond 10^8 Hz for all compositions. These findings are well consistent to the result obtained from magnetization measurements, which are shown in Fig. 7.