Electronic Supplementary Information for:

Control of molecular packing of chloroboron(III) and fluoroboron(III) subnaphthalocyanines by designing peripheral substituents

Akuto Takagi and Tadashi Mizutani

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 Japan

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Table of contents</td>
</tr>
<tr>
<td>S3</td>
<td>Figure S1. 1H NMR of 1a</td>
</tr>
<tr>
<td>S7</td>
<td>Figure S2. 13C NMR of 1a</td>
</tr>
<tr>
<td>S8</td>
<td>Figure S3. 1H NMR of 1b</td>
</tr>
<tr>
<td>S12</td>
<td>Figure S4. 13C NMR of 1b</td>
</tr>
<tr>
<td>S14</td>
<td>Figure S5. 1H NMR of 1c</td>
</tr>
<tr>
<td>S15</td>
<td>Figure S6. 1H NMR of 1d</td>
</tr>
<tr>
<td>S16</td>
<td>Figure S7. 1H NMR of 1e</td>
</tr>
<tr>
<td>S19</td>
<td>Figure S8. 1H NMR of 1f</td>
</tr>
<tr>
<td>S20</td>
<td>Figure S9. 1H NMR of 2a</td>
</tr>
<tr>
<td>S21</td>
<td>Figure S10. 1H NMR of 2b</td>
</tr>
<tr>
<td>S22</td>
<td>Figure S11. 1H NMR of 2d</td>
</tr>
<tr>
<td>S25</td>
<td>Figure S12. 1H NMR of 2e</td>
</tr>
<tr>
<td>S26</td>
<td>Figure S13. 1H NMR of 2f</td>
</tr>
<tr>
<td>S27</td>
<td>Figure S14. 1H NMR of 2g</td>
</tr>
<tr>
<td>S28</td>
<td>Figure S15. 13C NMR of 2g</td>
</tr>
<tr>
<td>S30</td>
<td>Figure S16. 1H NMR of 13</td>
</tr>
<tr>
<td>S31</td>
<td>Figure S17. 1H NMR of 14</td>
</tr>
<tr>
<td>S32</td>
<td>Figure S18. 1H NMR of 15</td>
</tr>
<tr>
<td>S33</td>
<td>Figure S19. MALDI-TOF mass of 1a</td>
</tr>
<tr>
<td>S35</td>
<td>Figure S20. MALDI-TOF mass of 1b</td>
</tr>
<tr>
<td>S37</td>
<td>Figure S21. MALDI-TOF mass of 1c</td>
</tr>
<tr>
<td>S39</td>
<td>Figure S22. MALDI-TOF mass of 1d</td>
</tr>
<tr>
<td>S41</td>
<td>Figure S23. MALDI-TOF mass of 1e</td>
</tr>
</tbody>
</table>
Figure S24. MALDI-TOF mass of 1f
Figure S25. MALDI-TOF mass of 2a
Figure S26. MALDI-TOF mass of 2b
Figure S27. MALDI-TOF mass of 2c
Figure S28. MALDI-TOF mass of 2d
Figure S29. MALDI-TOF mass of 2e
Figure S30. MALDI-TOF mass of 2f
Figure S31. MALDI-TOF mass of 2g
Figure S32. MALDI-TOF mass of 13
Figure S33. MALDI-TOF mass of 14
Figure S34. MALDI-TOF mass of 15
Figure S35. HPLC of 1a
Figure S36. HPLC of 1b
Figure S37. HPLC of 1c
Figure S38. HPLC of 1d
Figure S39. HPLC of 1e
Figure S40. HPLC of 1f
Figure S41. HPLC of 2a
Figure S42. HPLC of 2b
Figure S43. HPLC of 2c
Figure S44. HPLC of 2d
Figure S45. HPLC of 2e
Figure S46. HPLC of 2f
Figure S47. HPLC of 2g
Figure S48. XRD of 1d
Figure S49. XRD of 1e
Figure S50. XRD of 1f
Figure S51. Fluorescence spectra of 2b, 2e, 2f, and 2g in CH2Cl2-DMSO (1:1, v/v).
Figure S52. Excitation spectra of 2b in CH2Cl2-DMSO (1:1, v/v).
Figure S53. Excitation spectra of 2e in CH2Cl2-DMSO (1:1, v/v).
Figure S1. 1H NMR of 1a.
Figure S1. H NMR of 1a (Low-field region).
Figure S1. 1H NMR of 1a (up-field region).
Figure S1. 1H NMR of 1a (Low-field region 2).

<table>
<thead>
<tr>
<th>Compound</th>
<th>1H NMR Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- All 1H NMR spectra were recorded at 298 K.
- Samples were dissolved in DMSO-d$_6$.
- Spectra were acquired using a JEOL spectrometer.
Figure S2. 13C NMR of 1a.
Figure S.3. 1H NMR of 1b (Low-field region)
Figure S.3. 1H NMR of 1b (Up-field region).
Figure S3: 1H NMR of 1b (Up-field region 2).
Figure S4. 13C NMR of 1b (Up-field region).
Figure S7. 1H NMR of 1e.
Figure S7. 1H NMR of 1e (Low-field region).
Figure S7. H NMR of 1e (Up-field region).

HNMR of 1e (Up-field region)
Figure S10. H NMR of 2b.
Figure S11. H NMR of 2d.
Figure S1. 1H NMR of 2d (Low-field region).
Figure S1. H NMR of 2d (Up-field region).
Figure S14. 1H NMR of 2g.
Figure S15. 13C NMR of 2g.

[Image of 13C NMR spectrum with chemical shifts and peak assignments.]

Figure S15 13C NMR of 2g.
Figure S15. 13C NMR of 2g (up-field region).
Figure S16: 1H NMR of 13.
Figure S18. 1H NMR of 15.
Figure S19. MALDI-TOF mass spectrum of 1a.
Figure S19. MALDI-TOF mass spectrum of 1a (Molecular ion peaks).
Figure S20. MALDI-TOF mass spectrum of 1b.
Figure S20. MALDI-TOF mass spectrum of 1b (Molecular ion peaks).
Figure S21. MALDI-TOF mass spectrum of 1c.
Figure S21. MALDI-TOF mass spectrum of 1c (Molecular ion peaks).
Figure S22. MALDI-TOF mass spectrum of 1d.
Figure S22. MALDI-TOF mass spectrum of 1d (Molecular ion peaks).
Figure S23. MALDI-TOF mass spectrum of 1e.
Figure S23. MALDI-TOF mass spectrum of 1e (Molecular ion peaks).
Figure S24. MALDI-TOF mass spectrum of 1f.
Figure S24. MALDI-TOF mass spectrum of 1f (Molecular ion peaks).
Figure S25. MALDI-TOF mass spectrum of 2a.
Figure S25. MALDI-TOF mass spectrum of 2a (Molecular ion peaks).
Figure S26. MALDI-TOF mass spectrum of 2b.
Figure S26. MALDI-TOF mass spectrum of 2b (Molecular ion peaks).
Figure S27. MALDI-TOF mass spectrum of 2c.
Figure S27. MALDI-TOF mass spectrum of 2c (Molecular ion peaks).
Figure S28. MALDI-TOF mass spectrum of 2d.
Figure S28. MALDI-TOF mass spectrum of 2d (Molecular ion peaks).
Figure S29. MALDI-TOF mass spectrum of 2e.
Figure S29. MALDI-TOF mass spectrum of 2e (Molecular ion peaks).
Figure S30. MALDI-TOF mass spectrum of 2f.
Figure S30. MALDI-TOF mass spectrum of 2f (Molecular ion peaks).
Figure S31. MALDI-TOF mass spectrum of 2g.
Figure S31. MALDI-TOF mass spectrum of 2g (Molecular ion peaks).
Figure S32. MALDI-TOF mass spectrum of 13.
Figure S32. MALDI-TOF mass spectrum of 13 (Molecular ion peaks).
Figure S33. MALDI-TOF mass spectrum of 14.
Figure S33. MALDI-TOF mass spectrum of 14 (Molecular ion peaks).
Figure S34. MALDI-TOF mass spectrum of 15.
Figure S34. MALDI-TOF mass spectrum of 15 (Molecular ion peaks).
<Sample>
Sample name : 1a
Sample ID : takagi
File name : 20170529.lcd
Method : SubPc.lcm
Sample vol : 1000 uL
Date Meas. : 2017/06/07 14:37:56
Date Anal. : 2017/06/07 14:57:59

<Chromatogram>

<Peak List>
Detector A Ch2

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Hight</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S35. HPLC chart of 1a.
Figure S36. HPLC chart of 1b.
<Sample>
Sample name: 1c
Sample ID: takagi
File name: 20170546.lcd
Method: SubPc.lcm
Sample vol: 1000 uL
Date Meas.: 2017/06/08 18:38:10
Date Anal.: 2017/06/08 18:58:12

<Chromatogram>

<Peak List>
Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Hight</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure S37. HPLC chart of 1c.
<Sample>
Sample name: 1d
Sample ID: takagi
File name: subpc.lcm
Method: takagi
Sample vol: 1000 uL
Date Meas.: 2017/06/07 17:02:47
Date Anal.: 2017/06/07 17:22:49

<Chromatogram>

<Peak List>
Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S38. HPLC chart of 1d.
<Sample>

Sample name : 1e
Sample ID : takagi
File name : 20170534.lcd
Method : SubPc.lcm
Sample vol : 1000 uL
Date Meas. : 2017/06/07 17:36:20
Date Anal. : 2017/06/07 17:56:22

<Chromatogram>

<Peak List>

Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S39. HPLC chart of 1e.
<Sample>
Sample name : 1f
Sample ID : takagi
File name : SubPc.lcm
Method : SubPc.lcm
Sample vol : 1000 uL
Date Meas. : 2017/06/07 18:01:46
Date Anal. : 2017/06/07 18:21:48

<Chromatogram>

<Peak List>
Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S40. HPLC chart of 1f.
<Sample>
Sample name : 2a
Sample ID : takagi
File name : 20170543.lcd
Method : SubPc.lcm
Sample vol : 1000 uL
Date Meas. : 2017/06/08 14:35:06
Date Anal. : 2017/06/08 15:05:08

<Chromatogram>

<Peak List>
Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.156</td>
<td>5983049</td>
<td></td>
<td>178217</td>
<td>100.000</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>5983049</td>
<td></td>
<td>178217</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Figure S41. HPLC chart of 2a.
<Sample>
Sample name: 2b
Sample ID: takagi
File name: 20170537.lcd
Method: SubPc.lcm
Sample vol: 1000 uL
Date Meas.: 2017/06/08 11:13:48
Date Anal.: 2017/06/08 11:33:51

<Chromatogram>

<Peak List>
Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret. time</th>
<th>Area</th>
<th>Hight</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S42. HPLC chart of 2b.
<Sample>
Sample name : 2c
Sample ID : takagi
File name : SubPc.lcm
Method : 20170538.lcd
Sample vol : 1-
Date Meas. : 1000 uL
Date Anal. : 2017/06/08 11:38:08

<Chromatogram>

<Peak List>
Detector A Ch2 670 nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S43. HPLC chart of 2c.
<Sample>
Sample name : 2d
Sample ID : サンプルID
File name : ファイル名
Method : メソッド
Sample vol : サンプルvolume
Date Meas. : 測定日時
Date Anal. : 分析日時

<Chromatogram>

<Peak List>
Detector A Ch2 670 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S44. HPLC chart of 2d.
Figure S45. HPLC chart of 2e.
Figure S46. HPLC chart of 2f.
<Sample>
Sample name: 2g
Sample ID: 2g
File name: SubPc.lcm
Method: takagi
Sample vol: 1000 uL
Date Meas.: 2017/06/08 19:26:51
Date Anal.: 2017/06/08 19:46:53

<Chromatogram>

<Peak List>
Detector A Ch2 680 nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. time</th>
<th>Area</th>
<th>Height</th>
<th>Conc.</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S47. HPLC chart of 2g.
Figure S48 Powder X-ray diffraction patterns of 1d.
Figure S49 Powder X-ray diffraction patterns of 1e.
Figure S50 Powder X-ray diffraction patterns of 1f.
Figure S51. Fluorescence spectra of 2b, 2e, 2f and 2g in CH$_2$Cl$_2$-DMSO (1:1. v/v).

Figure S52. Excitation spectra of 2b in CH$_2$Cl$_2$-DMSO (1:1. v/v).
Figure S52. Excitation spectra of 2e in CH₂Cl₂-DMSO (1:1. v/v).