Supporting Information

Effect of MWCNTs-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells

Xiayuan Wua,b · Xiaomin Xionga · Gianluca Brunettib · Xiaoyu Yonga · Jun Zhoua · Lijuan Zhanga · Ping Weia · Honghua Jiaa,*

aBioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
bFuture Industries Institute, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia 5095, Australia

*Corresponding author:

Honghua Jia

Nanjing Tech University, No.30 Puzhu Road(S), Nanjing, 211816, Jiangsu, P.R. China

Tel./Fax: +86 25 58139929
E-mail: hhjia@njtech.edu.cn

TEXT (1)
FIGURES (3)
PAGES (5)
Calculations

1. Total coulombs transferred (C_t):
 \[C_t = \int_0^t I dt \]
 where, \(I \) is the current and \(t \) is the total time of current flow.

2. Total coulombs required (C_r) for the reduction of Cr(VI) to Cr(III):
 \[C_r = \frac{nFVc}{M} \]
 where, \(n \) is the number of electrons involved in Cr(VI) reduction (3 moles/mol), \(F \) is the Faraday constant (96,485.3 Coulombs/mol), \(V \) is the volume of the catholyte (L), \(c \) is the concentration of Cr(VI) (g/L) and \(M \) is the molecular weight of chromium (52 g/mol).
Fig. S1. The comparison of the total coulombs transferred (C_t) and coulombs required (C_r) for the reduction of Cr(VI) in the different MFCs at the end of 10 h operation time.
Fig. S2. The Cr(VI) removal of the three electrodes with and without biomass after 24h-adsorption experiment.
Fig. S3. Cyclic voltammogram of the abiotic graphite felt in a MFC (vs. Ag/AgCl, scan rate of 5 mV/s over the range –600 mV to +600 mV).