Electronic Supplementary Information

Environmentally benign and diastereoselective synthesis of 2,4,5-trisubstituted-2-imidazolines

Hai Anh Le Phuong,^{a,†} Levente Cseri,^{a,†} George F. S. Whitehead,^b Arthur Garforth,^a Peter Budd,^b Gyorgy Szekely^{a,*}

^a School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, UK, M1 3BB

^b School of Chemistry, The University of Manchester, Oxford Road, Manchester, UK, M13 9PL

[†] These authors equally contributed to this work.

* Corresponding author: Tel.: +44 (0)161 306 4366, E-mail: gyorgy.szekely@manchester.ac.uk

Table of Contents

1.	Syı	nthesis of benzaldehyde substrates	\$3	
1	.1.	Synthesis of methyl 4-formylbenzoate	S3	
1.2.		Synthesis of 4-formyl- <i>N</i> , <i>N</i> , <i>N</i> -trimethylanilinium iodide	S3	
2.	NN	IR spectra	S4	
3.	3. Mass spectra			
4.	4. IR spectraS			
5.	HPLC analysis			
5.1.		HPLC methods		
5.2.		HPLC chromatograms		
6.	Kiı	netic studies		
7.	7. Quantum mechanical calculations			
7	.1.	Computational methods and findings		
7	.2.	Computational raw data		
8.	Cry	Crystallography		
9.	Membrane separation			

1. Synthesis of benzaldehyde substrates

1.1. Synthesis of methyl 4-formylbenzoate

Methyl 4-formylbenzoate was prepared according to a method previously proposed in the literature¹ with slight modifications. 4-Formylbenzoic acid (2.5 g, 16.7 mmol) was dissolved in 50 mL methanol under inert atmosphere. The reaction mixture was cooled down to 0 °C and then SOCl₂ (10 mL, 136 mmol) was added dropwise under stirring. The mixture was stirred at room temperature for 24 h. The reaction was terminated by evaporating the excess methanol with a rotavap. The oily residue was poured onto 500 mL cold water to provide the product as white crystals which were collected on a vacuum filter.

Yield: 87% (2.38 g)

The obtained spectra are in good agreement with literature data¹. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 8.18 (d, *J* = 7.8 Hz, 2H), 7.94 (d, *J* = 7.8 Hz, 3H), 3.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 166.2, 139.2, 135.2, 130.3, 129.6, 52.7; IR (ATR-FTIR) v_{max} 2963 (CH), 2888 (CH), 1721 (C=O), 1683 (C=O), 1280 (C-C(O)-O), 1106 (C-O-C) cm⁻¹.

1.2. Synthesis of 4-formyl-*N*,*N*,*N*-trimethylanilinium iodide

4-(Dimethylamino)benzaldehyde (2 g, 13.4 mmol) in acetonitrile (15 mL) was stirred under inert atmosphere in a pressure tube. Then, methyl iodide (8.2 g, 3.6 mL, 57.8 mmol) was added to the solution. The reaction mixture was stirred at 90 °C for 72 h. Acetonitrile was evaporated and the residue was crystallized from ethyl acetate (20 mL). The product was obtained as pale yellow crystals.

Yield: 72% (442 mg)

¹H NMR (400 MHz, CD₃CN) δ 10.10 (s, 1H), 8.13 (d, J = 9.2 Hz, 2H), 8.07 (d, J = 9.1 Hz, 2H), 3.66 (s, 9H); ¹³C NMR (101 MHz, CD₃CN) δ 192.1, 151.5, 138.4, 132.0, 122.4, 58.1; MS (ESI–/SQD2) m/z: 126.8 [I]⁻, 418.0 [M+2I]⁻; MS (ESI+/SQD2) m/z: 149.0 [M-•CH₃]⁺⁺; HRMS (HESI+/Orbitrap) m/z: Calcd for [M]⁺ C₁₀H₁₄NO: 164.1070; Found: 164.1068; D = -1.16 ppm.

2. NMR spectra

Fig. S1 ¹H NMR (500 MHz, THF- d_8) spectrum of **1** with the structure in insert.

Fig. S2 13 C NMR (126 MHz, THF- d_8) spectrum of 1 with the structure in insert.

Fig. S3 ¹⁹F NMR (471 MHz, THF- d_8) spectrum of 1 with the structure in insert.

Fig. S4 ¹H NMR (500 MHz, DMSO- d_6) spectrum of **2** with the structure in insert.

Fig. S5 13 C NMR (126 MHz, DMSO- d_6) spectrum of **2** with the structure in insert.

Fig. S6 ¹H NMR (500 MHz, THF- d_8) spectrum of **3** with the structure in insert.

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

Fig. S7 ¹³C NMR (126 MHz, THF- d_8) spectrum of 3 with the structure in insert.

Fig. S8 ¹H NMR (500 MHz, DMSO- d_6) spectrum of 4 with the structure in insert.

Fig. S9 13 C NMR (126 MHz, DMSO- d_6) spectrum of 4 with the structure in insert.

Fig. S10 ¹H NMR (500 MHz, THF- d_8) spectrum of 5 with the structure in insert.

Fig. S11 13 C NMR (126 MHz, THF- d_8) spectrum of 5 with the structure in insert.

Fig. S12 19 F NMR (471 MHz, THF- d_8) spectrum of 5 with the structure in insert.

Fig. S13 ¹H NMR (500 MHz, THF- d_8) spectrum of 6 with the structure in insert.

Fig. S14 ¹³C NMR (126 MHz, THF- d_8) spectrum of 6 with the structure in insert.

Fig. S15 ¹H NMR (500 MHz, THF- d_8) spectrum of 7 with the structure in insert.

Fig. S16 ¹³C NMR (126 MHz, THF- d_8) spectrum of 7 with the structure in insert.

Fig. S17 ¹H NMR (500 MHz, DMSO- d_6) spectrum of **8** with the structure in insert.

Fig. S18¹³C NMR (126 MHz, DMSO- d_6) spectrum of **8** with the structure in insert.

Fig. S19 ¹H NMR (500 MHz, THF- d_8) spectrum of 9 with the structure in insert.

Fig. S20 ¹³C NMR (126 MHz, THF- d_8) spectrum of **9** with the structure in insert.

Fig. S21¹⁹F NMR (471 MHz, THF- d_8) spectrum of **9** with the structure in insert.

Fig. S22 ¹H NMR (500 MHz, THF- d_8) spectrum of **10** with the structure in insert.

Fig. S23 ¹³C NMR (126 MHz, THF- d_8) spectrum of 10 with the structure in insert.

Fig. S24 ¹⁹F NMR (471 MHz, THF- d_8) spectrum of 10 with the structure in insert.

Fig. S25 ¹H NMR (500 MHz, CD₃OD) spectrum of 11 with the structure in insert.

Fig. S26¹³C NMR (126 MHz, CD₃OD) spectrum of **11** with the structure in insert.

Fig. S27 ¹H NMR (500 MHz, THF- d_8) spectrum of **12** with the structure in insert.

Fig. S28 ¹³C NMR (126 MHz, THF- d_8) spectrum of 12 with the structure in insert.

Fig. S29 ¹H NMR (500 MHz, DMSO- d_6) spectrum of **13** with the structure in insert.

Fig. S30 ¹³C NMR (126 MHz, DMSO- d_6) spectrum of 13 with the structure in insert.

Fig. S31 ¹H NMR (500 MHz, CDCl₃) spectrum of methyl 4-formylbenzoate with the structure in insert.

Fig. S32 13 C NMR (126 MHz, CDCl₃) spectrum of methyl 4-formylbenzoate with the structure in insert.

Fig. S33 ¹H NMR (500 MHz, CD₃CN) spectrum of 4-formyl-*N*,*N*,*N*-trimethylanilinium iodide with the structure in insert.

Fig. S34 ¹³C NMR (126 MHz, CD₃CN) spectrum of 4-formyl-*N*,*N*,*N*-trimethylanilinium iodide with the structure in insert.

3. Mass spectra

Fig. S35 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 1 with the structure in insert.

Fig. S36 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **1** in insert.

Fig. S37 ESI+/Orbitrap mass spectrum of 2 with the structure in insert.

Fig. S38 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M]^{3+}$ ion with the structure of **2** in insert.

Fig. S39 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 3 with the structure in insert.

Fig. S40 (a) Observed ESI– high resolution mass spectrum and (b) calculated isotopic distribution of the $[M-H]^-$ ion with the structure of **3** in insert.

Fig. S41 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 4 with the structure in insert.

Fig. S42 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+Na]^+$ adduct with the structure of **4** in insert.

Fig. S43 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 5 with the structure in insert.

Fig. S44 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **5** in insert.

Fig. S45 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 6 with the structure in insert.

Fig. S46 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **6** in insert.

Fig. S47 (a) ESI–/SQD2 and (b) ESI+/SQD2 mass spectra of 7 with the structure in insert.

Fig. S48 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **7** in insert.

Fig. S49 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 8 with the structure in insert.

Fig. S50 (a) Observed ESI– high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+Cl]^-$ adduct with the structure of **8** in insert.

Fig. S51 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 9 with the structure in insert.

Fig. S52 (a) Observed ASAP+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **9** in insert.

Fig. S53 ESI+/Orbitrap mass spectrum of 10 with the structure in insert.

Fig. S54 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **10** in insert.

Fig. S55 (a) ESI–/Orbitrap and (b) ESI+/Orbitrap mass spectra of **11** with the structure in insert. The peaks marked with an asterix (*) are MS background peaks (m/z: 165; 239; 313).

Fig. S56 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+Na]^+$ adduct with the structure of **11** in insert.

Fig. S57 (a) ESI-/SQD2 and (b) ESI+/SQD2 mass spectra of 12 with the structure in insert.

Fig. S58 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+H]^+$ ion with the structure of **12** in insert.

Fig. S59 (a) ESI–/Orbitrap and (b) ESI+/Orbitrap mass spectra of **13** with the structure in insert. The peaks marked with an asterix (*) are MS background peaks (m/z: 165; 239; 313).

Fig. S60 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M+Na]^+$ adduct with the structure of **13** in insert.

Fig. S61 (a) ESI–/SQD2 and (b) ESI+/SQD2 mass spectra of 4-formyl-*N*,*N*,*N*-trimethylanilinium iodide with the structure in insert.

Fig. S62 (a) Observed ESI+ high resolution mass spectrum and (b) calculated isotopic distribution of the $[M]^+$ ion of 4-formyl-*N*,*N*,*N*-trimethylanilinium iodide.
4. IR spectra

4000	3800 3600	3400	3200 3000	2800	2600 24	0 2200	2000 1800	1600	1400 1	200 Wa	ivenumber (cm ⁻¹)
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity
1	664.84	86.036	W	8	1001.84	73.389	M	15	1251.58	87.914	W
2	698.11	86.238	W	9	1017.27	63.761	М	16	1283.88	78.518	M
3	719.32	85.359	W	10	1065.96	40.624	VS	17	1322.93	37.860	VS
4	756.44	85.851	W	11	1105.98	38.063	VS	18	1422.24	87.085	W
5	838.88	75.252	М	12	1129.12	55.394	S	19	1473.83	87.344	W
6	852.86	74.539	М	13	1159.49	57.787	S	20	1526.38	88.736	W
7	885.17	75.961	M	14	1224.09	90.816	W	21	1569.77	91.017	W

Fig. S63 ATR-FTIR spectrum of 1 with the table of peaks and the structure in insert.

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
38	300 3600	3400	3200 3000	2800	2600	2400	2200	2000	1800	160	0 1400	1200 W	/avenumber (cm ⁻¹
No	cm ⁻¹	%Т	Intensity	No	cm ^{- 1}		%Т	Intensity		No	cm ⁻¹	%Т	Intensity
1	693.77	82.654	M	9	1120.92		84.286	М		17	1508.06	82.836	M
2	748.25	86.245	м	10	1205.77		91.093	w		18	1574.59	90.890	W
3	845.63	71.510	VS	11	1234.22		89.676	М		19	1606.90	86.707	м
4	884.20	87.377	М	12	1285.32		89.420	М		20	1617.50	86.194	M
5	938.20	73.113	VS	13	1361.50		92.235	w		21	2953.93	92.819	W
6	955.56	78.468	S	14	1418.39		83.216	М		22	3011.30	88.593	M
7	1013.41	79.535	S	15	1467.56		75.040	S		23	3233.56	90.080	W
8	1065.48	92.493	w	16	1487.81		80.014	S					

Fig. S64 ATR-FTIR spectrum of 2 with the table of peaks and the structure in insert.

38	00 3600	3400	3200 3000	2800	2600 240	0 2200	2000 18	00 160	0 1400	1200 Wa	venumber (cm ⁻¹)
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%T	Intensity
1	702.44	47.728	S	8	1216.38	81.373	W	15	1523.97	43.505	VS
2	740.53	66.129	М	9	1255.43	78.000	М	16	1586.65	68.036	М
3	859.61	53.968	S	10	1275.20	73.113	М	17	3061.92	94.580	VW
4	889.02	75.224	М	11	1311.84	73.393	М	18	3081.21	94.760	VW
5	1009.55	70.704	М	12	1345.11	37.999	VS	19	3107.24	95.318	VW
6	1104.05	66.261	М	13	1419.83	83.136	W	20	3418.21	86.065	W
7	1173.95	86.204	W	14	1448.28	74.515	М				

Fig. S65 ATR-FTIR spectrum of 3 with the table of peaks and the structure in insert.

														
38	3600 3600	3400	3200 3000	2800	2600 2	400 2200	2000 1	1800	1600 1400	1200 W	avenumber (cm ⁻¹			
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity			
1	733.30	67.290	М	12	1086.69	66.127	М	23	1504.20	88.958	W			
2	753.55	66.714	М	13	1120.44	64.605	М	24	1568.33	89.075	W			
3	776.69	50.369	S	14	1147.44	40.532	VS	25	1592.91	84.862	W			
4	808.99	91.453	W	15	1180.70	88.387	W	26	1618.47	91.022	W			
5	847.56	78.443	М	16	1203.85	90.514	W	27	2922.11	93.818	VW			
6	891.43	83.975	W	17	1249.16	84.942	W	28	3003.59	94.049	VW			
7	954.59	67.740	М	18	1277.61	67.130	М	29	3019.50	94.203	VW			
8	967.61	64.904	М	19	1292.07	52.749	S	30	3057.10	93.878	VW			
9	1000.87	81.710	W	20	1319.55	84.888	w	31	3162.20	93.056	VW			
10	1015.82	86.903	W	21	1405.85	84.619	w							
11	1059.21	87 115	W	22	1475 76	88 483	W	1						

Fig. S66 ATR-FTIR spectrum of 4 with the table of peaks and the structure in insert.

380	00 3600	3400 3	3200 3000	2800	2600 24	100 2200	2000 1	1800	160	0 1400	1200 W	avenumber (cm ⁻¹)
No	cm ⁻¹	%T	Intensity	No	cm ⁻¹	%Т	Intensity		No	cm ⁻¹	%Т	Intensity
1	725.59	67.112	м	8	1096.82	84.651	W		15	1497.45	90.858	W
2	746.32	59.711	м	9	1123.81	96.231	VW		16	1573.15	93.351	VW
3	758.37	44.969	S	10	1249.65	89.287	W		17	1599.18	93.694	VW
4	800.31	25.501	S	11	1277.61	94.898	VW		18	1620.39	93.052	VW
5	816.22	12.709	VS	12	1333.53	96.511	VW		19	2935.61	97.785	VW
6	835.03	29.003	S	13	1410.19	92.272	VW		20	3171.85	95.160	VW
7	1013.41	92.054	VW	14	1471.90	84.577	w					

Fig. S67 ATR-FTIR spectrum of 5 with the table of peaks and the structure in insert.

							1		1						1
3800	3600	3400	3200	3000	2800	2600	2400	2200	2000	1800	1600	1400	1200	Wavenumbe	r (cm ⁻¹)

No	cm ⁻¹	%Т	Intensity	No	cm ^{- 1}	%Т	Intensity	No	cm ⁻¹	%Т	Intensity
1	699.07	81.064	S	8	1014.86	81.772	М	15	1557.72	92.670	W
2	742.46	82.378	М	9	1100.67	84.526	М	16	1604.00	80.704	S
3	786.33	86.382	М	10	1254.47	86.448	М	17	2226.90	79.954	S
4	805.14	80.066	S	11	1279.06	87.036	М	18	3035.41	96.031	VW
5	832.13	77.917	S	12	1412.60	85.379	М	19	3051.32	95.891	VW
6	850.94	69.829	VS	13	1445.39	76.122	S	20	3071.57	95.938	VW
7	885.65	86.818	М	14	1504.69	84.074	М	21	3335.77	88.456	М

Fig. S68 ATR-FTIR spectrum of 6 with the table of peaks and the structure in insert.

30	00 3000	3400	5200 5000	2000	2000	2400 2	200 2000	100	0 160	1400	1200 V	vavenumber (cm
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%	Г Inter	nsity	No	cm ⁻¹	%Т	Intensity
1	652.30	88.650	W	8	858.17	86.9	76 W	/	15	1513.85	91.191	W
2	706.78	69.346	S	9	867.81	83.6	34 M	1	16	1608.34	81.150	м
3	720.76	67.327	S	10	961.34	87.2	:11 W	/	17	1708.14	62.108	S
4	741.01	65.599	S	11	1014.86	76.7	71 M	1	18	1717.30	62.473	S
5	775.24	83.793	М	12	1107.42	59.6	76 S		19	2955.38	96.176	VW
6	782.96	87.931	W	13	1275.20	53.3	60 VS	S	20	3315.03	88.583	W
7	830.69	90,198	W	14	1435.26	76.1	88 M	1				

Fig. S69 ATR-FTIR spectrum of 7 with the table of peaks and the structure in insert.

380	00 3600	3400 3	200 3000	2800	2600 2400	2200	2000 180	0 1600	0 1400	1200 W	avenumber (cm ⁻¹)			
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity			
1	665.32	70.981	S	11	1007.14	67.318	VS	21	1403.92	72.152	S			
2	701.48	74.615	S	12	1052.46	79.351	М	22	1484.44	67.138	VS			
3	717.87	72.485	S	13	1066.92	75.902	S	23	1546.15	80.920	М			
4	727.51	72.617	S	14	1135.87	83.724	М	24	1592.43	72.343	S			
5	750.17	66.919	VS	15	1186.97	85.653	М	25	1611.72	75.449	S			
6	797.90	66.710	VS	16	1207.70	85.693	М	26	2710.94	81.810	М			
7	829.24	76.634	S	17	1250.13	76.475	S	27	2839.67	80.704	М			
8	849.97	74.308	S	18	1275.20	84.855	М	28	3025.76	87.179	W			
9	875.04	73.863	S	19	1294.97	83.120	М							
10	959.89	83.507	м	20	1328.71	82.334	М]						

Fig. S70 ATR-FTIR spectrum of 8 with the table of peaks and the structure in insert.

38	00 3600	3400	3200 3000	2800	2600	2400	2200	2000	180	0 16	600 1400	1200 V	Vavenumber (cm ⁻¹
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹		%Т	Intensity		No	cm ⁻¹	%Т	Intensity
1	738.60	88.534	W	10	1108.87		34.400	VS		19	1485.40	84.807	W
2	760.30	88.049	W	11	1118.99		37.707	VS		20	1525.90	86.786	W
3	829.72	68.744	М	12	1135.87		58.588	s		21	1567.84	89.701	W
4	856.72	58.787	s	13	1162.38		61.779	м		22	1600.63	87.235	W
5	928.07	89.770	W	14	1197.10		89.046	W		23	1619.43	92.246	W
6	979.18	85.707	W	15	1223.61		88.608	w		24	2932.23	96.459	VW
7	1003.28	79.838	М	16	1270.38		84.664	W		25	3082.17	97.061	VW
8	1017.27	58.147	S	17	1324.37		35.863	VS					
9	1066.92	40.224	VS	18	1424.17		89.729	W					

Fig. S71 ATR-FTIR spectrum of 9 with the table of peaks and the structure in insert.

380	3600	3400 32	200 3000	2800	2600 2400	2200	2000 180	0 1600	1400	1200 Ŵ	avenumber (cm ⁻¹)			
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	Cm ^{- 1}	%Т	Intensity			
1	652.18	61.833	М	9	1070.42	28.647	VS	17	1491.67	89.900	W			
2	671.47	73.984	М	10	1114.17	21.475	VS	18	1505.17	89.604	W			
3	696.90	34.068	S	11	1160.58	44.790	S	19	1580.86	89.601	W			
4	721.37	77.550	М	12	1200.71	77.857	М	20	1615.45	89.734	W			
5	789.59	68.216	М	13	1268.57	67.172	М	21	2933.08	97.088	W			
6	802.00	68.211	М	14	1325.94	40.527	S	22	3137.37	95.889	W			
7	899.51	74.974	М	15	1433.33	83.189	W							
8	1002.20	77.777	М	16	1449.97	83.776	W	1						

Fig. S72 ATR-FTIR spectrum of 10 with the table of peaks and the structure in insert.

CF3

····	<u></u>													
380	3600	3400 32	00 3000	2800	2600 2400	2200	2000 1800	1600	1400	1200 Wa	avenumber (cm ⁻¹)			
No	cm ⁻¹	%T	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ^{- 1}	%T	Intensity			
1	682.92	68.751	М	10	1064.63	75.482	M	19	1505.89	79.143	М			
2	699.79	71.533	М	11	1094.89	84.485	M	20	1547.23	80.605	М			
3	745.47	76.644	м	12	1123.81	81.275	M	21	1562.18	86.862	W			
4	792.60	75.713	М	13	1217.95	83.506	M	22	1596.05	64.194	S			
5	817.79	75.865	М	14	1251.82	83.117	М	23	1620.03	91.708	W			
6	835.63	76.518	М	15	1297.01	81.237	M	24	3033.12	87.596	W			
7	890.47	84.388	М	16	1339.32	86.197	W	25	3156.06	86.852	W			
8	992.80	74.966	М	17	1415.25	70.457	M							
9	999.79	76.435	м	18	1464,19	78.801	м							

Fig. S73 ATR-FTIR spectrum of 11 with the table of peaks and the structure in insert.

 					Trees from the								1		 1	
0000	0000	0400	0000	0000	0000	0000	0400	0000	0000	1000	4000	4 4 0 0	4000	10/	 - /	/ 1 A

											(
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity
1	691.36	43.989	VS	10	1073.67	86.885	W	19	1494.56	78.145	м
2	745.35	55.314	S	11	1135.87	89.728	W	20	1557.24	81.946	W
3	760.78	69.706	M	12	1208.18	81.072	W	21	1577.00	80.822	м
4	800.31	86.750	w	13	1264.59	86.933	W	22	1590.50	83.430	W
5	856.24	85.946	W	14	1289.66	88.531	W	23	1647.39	80.150	м
6	915.54	85.210	w	15	1343.66	86.430	W	24	3026.73	86.873	W
7	965.68	57.153	S	16	1356.19	88.444	W	25	3055.66	88.014	W
8	1013.89	80.617	M	17	1448.76	77.665	М				
9	1047.64	86.882	W	18	1472.38	78,120	М				

Fig. S74 ATR-FTIR spectrum of 12 with the table of peaks and the structure in insert.

38	300 3600	3400 3	200 3000	2800	2600 2400	2200	2000 1800	1600	1400 12	200 Wav	venumber (cm ⁻¹)
No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity	No	cm ⁻¹	%Т	Intensity
1	627.72	83.309	W	11	1184.56	28.749	VS	21	1654.62	76.471	М
2	665.80	86.569	W	12	1224.58	59.299	М	22	1707.18	52.372	S
3	692.80	85.997	W	13	1245.31	52.441	S	23	1718.26	48.676	S
4	750.17	79.871	W	14	1313.77	60.357	М	24	2534.97	83.181	W
5	838.88	78.931	W	15	1352.82	80.856	W	25	2624.64	78.035	М
6	862.99	73.453	м	16	1371.14	69.742	М	26	2729.26	84.362	W
7	876.97	74.412	м	17	1416.46	86.758	w	27	2853.65	91.480	W
8	977.25	60.659	м	18	1442.01	87.774	W	28	2983.82	90.060	W
9	1026.43	58.140	м	19	1481.54	84.504	w	29	3332.87	96.700	VW
10	1117.06	78 907	W	20	1600 15	72 867	м				

Fig. S75 ATR-FTIR spectrum of 13 with the table of peaks and the structure in insert.

Ne	em:1	0/ T	Interneity	Nie	ama-1	0/ T	Intensity	Na	om: 1	0/ T	Intensity
INO	CIII	70 1	Intensity	INO	Cin	701	Intensity	INO	CIII	70 1	Intensity
1	686.05	55.304	S	7	1105.98	50.928	VS	13	1577.00	80.617	М
2	755.96	47.289	VS	8	1201.92	61.411	S	14	1682.59	57.468	S
3	807.55	59.093	S	9	1280.50	48.193	VS	15	1721.16	52.855	S
4	850.94	61.604	S	10	1390.91	75.781	м	16	2887.88	93.940	VW
5	955.07	73.862	M	11	1434.30	74.407	М	17	2963.09	93.094	W
6	1012.93	68.508	М	12	1502.76	82.397	М				

Fig. S76 ATR-FTIR spectrum of methyl 4-formylbenzoate with the table of peaks and the structure in insert.

5. HPLC analysis

5.1.HPLC methods

When necessary, preparative HPLC was used for the purification in order to obtain high purity products (>99%). For the preparative HPLC purification VWR LaPrep Sigma instrument was used with preparative solvent pump (La Prep Sigma LP1200), sample injection pump (La Prep Sigma LP1000), UV detector (La Prep Sigma LP3101), Interchim, Uptisphere Strategy 100A, 10 μ m, C18-3 (250 × 30 mm) column; with eluent A: water type I (18.2 MΩ) with 0.1% TFA and eluent B: methanol.

For Methods 1–4, HPLC analyses were performed on an ACE-C18, 5 μ m, 100 Å, 150 × 4.6 mm column from Hichrom. The solvent system used was: eluent A: water type I (18.2 MΩ) with 0.1 % TFA and eluent B: acetonitrile with 0.1% TFA. Gradient elution was selected with 1 mL min⁻¹ flow rate, detection at 250 nm and column temperature at 30 °C.

For Method 5, HPLC analyses were performed on a SeQuant[®] ZIC[®]-HILIC, 5 μ m, 200 Å, 150×4.6 mm column from Merck. The solvent system used was eluent A: Triethyl ammonium acetate (100 mM) buffer and eluent B: acetonitrile with triethyl ammonium acetate (10 mM). Gradient elution was selected with 0.7 mL min⁻¹ flow rate, detection at 250 nm or 280 nm and column temperature at 30 °C.

Method 1

The separation of compounds was achieved with 0.1% TFA in water and 0.1% TFA in acetonitrile gradient elution. B was held at 50% for 3 min, and then was eluted from 50% to 75% in 9 min.

Method 2

The separation of compounds was achieved with 0.1% TFA in water and 0.1% TFA in acetonitrile gradient elution. B was held at 25% for 3 min, and then was eluted from 25% to 50% in 11 min.

Method 3

The separation of compounds was achieved with 0.1% TFA in water and 0.1% TFA in acetonitrile gradient elution B was held at 10% for 3 min, and then was eluted from 10% to 50% in 9 min.

Method 4

The separation of compounds was achieved with 0.1 % TFA in water and 0.1 % TFA in acetonitrile gradient elution. B was held at 5% for 3 min then was eluted from 5% to 80% in 11 min.

Method 5

The separation of compounds was achieved with triethyl ammonium acetate (100 mM) buffer and acetonitrile with triethyl ammonium acetate (10 mM) gradient elution. B was held at 95% for 5 min, and then was eluted from 95% to 20% in 12 min.

5.2.HPLC chromatograms

Fig. S77 Chromatogram of 4-(trifluoromethyl)benzaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 1.

Fig. S78 Chromatogram of **1** after recrystallisation at 250 nm with the table of peaks and structure in insert. The compound was monitored with Method 1.

Fig. S79 Chromatogram of **1** after preparative HPLC purification at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S80 Chromatogram of 4-formyl-*N*,*N*,*N*-trimethylanilinium iodide at 280 nm with the structure in insert. The compound was monitored with Method 5.

Fig. S81 Chromatogram of **2** after recrystallisation at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 5.

Fig. S82 Chromatogram of 4-nitrobenzaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 2.

Fig. S83 Chromatogram of **3** after filtering the precipitated product at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 2.

Fig. S84 Chromatogram of **3** after preparative HPLC purification at 250 nm with the structure in insert. The compound was monitored with Method 2.

Fig. S85 Chromatogram of 4-(methylsulfonyl)benzaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 3.

Fig. S86 Chromatogram of **4** after filtering the precipitated product at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 3.

Fig. S87 Chromatogram of **4** after preparative HPLC purification at 250 nm with the structure in insert. The compound was monitored with Method 3.

Fig. S88 Chromatogram of 4-(pentafluorosulfanyl)benzaldehyde at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S89 Chromatogram of **5** after recrystallisation at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S90 Chromatogram of **5** after preparative HPLC purification at 250 nm with the structure in insert. The compound was monitored with Method 1.

Fig. S91 Chromatogram of 4-cyanobenzaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 2.

Fig. S92 Chromatogram of **6** after recrystallisation at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 2.

Fig. S93 Chromatogram of **6** after preparative HPLC purification at 250 nm with the structure in insert. The compound was monitored with Method 2.

Fig. S94 Chromatogram of 4-formylbenzoate at 250 nm with the structure in insert. The compound was monitored with Method 2.

Fig. S95 Chromatogram of **7** after recrystallisation at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 2.

Fig. S96 Chromatogram of **7** after preparative HPLC purification at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 2.

Fig. S97 Chromatogram of 4-bromobenzaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 1.

Fig. S98 Chromatogram of **8** at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S99 Chromatogram of **9** after recrystallisation at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S100 Chromatogram of 3-(trifluoromethyl)benzaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 1.

Fig. S101 Chromatogram of **10** at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S102 Chromatogram of **10** after preparative HPLC purification at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S103 Chromatogram of 4-formylpyridine at 250 nm with the structure in insert. The compound was monitored with Method 4.

Fig. S104 Chromatogram of **11** after extraction at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 4.

Fig. S105 Chromatogram of **11** after preparative HPLC purification at 250 nm with the structure in insert. The compound was monitored with Method 4.

Fig. S106 Chromatogram of cinnamaldehyde at 250 nm with the structure in insert. The compound was monitored with Method 1.

Fig. S107 Chromatogram of **12** after recrystallisation at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S108 Chromatogram of **12** after preparative HPLC purification at 250 nm with the table of peaks and the structure in insert. The compound was monitored with Method 1.

Fig. S109 Chromatogram of ethyl 4-oxobut-2-enoate at 250 nm with the structure in insert. The compound was monitored with Method 2.

Fig. S110 Chromatogram of 13 at 250 nm with the structure in insert. The compound was monitored with Method 2.

6. Kinetic studies

The fitting of the reaction rate model on the experimental data was performed by varying the $[k_1;k_2]$ vector using the MATLAB² Optimisation Tool with *fmincon* solver and interior point algorithm on an objective function which numerically solves the following differential equations and gives the sum of square deviation (SSD) as output:

$$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -3[\mathrm{A}]^n k_1 \tag{1}$$

$$\frac{d[B]}{dt} = [A]^n k_1 - [B] k_2$$
(2)

$$\frac{\mathrm{d}[\mathrm{C}]}{\mathrm{d}t} = [\mathrm{B}]k_2 \tag{3}$$

The derivatives were approximated by the solver. The initial concentrations were $[A]_0 = 0.5 \text{ mol dm}^{-3}$, $[B]_0 = 0 \text{ mol dm}^{-3}$ and $[C]_0 = 0 \text{ mol dm}^{-3}$, according to the experimental procedure. The optimisations were run from a suitable starting point using [0;0] lower bound and a suitable upper bound. If any of the obtained optimum values were close to the upper bound, the optimisation was repeated using an extended upper bound. Different *n* values of 1–5 were tested,

and the optimised SSDs are summarized in Table S1. The calculated reaction rate curves were obtained using the optimised $[k_1;k_2]$ values and solving the same differential equations.

	Sum of square deviations								
n		p-Subs	tituent:						
_	$-NO_2$	$-SF_5$	$-CF_3$	-COOMe					
1	5.67E-03	9.39E-05	4.32E-04	1.24E-03					
2	1.12E-03	9.75E-05	4.44E-04	3.73E-04					
3	4.82E-04	7.09E-06	1.53E-04	2.16E-04					
4	6.29E-04	1.71E-05	3.98E-05	2.51E-04					
5	8.10E-04	2.18E-05	5.66E-05	3.36E-04					

Table S1 SSDs on the experimental data for different overall rate orders (*n*). Fitting with n = 3 resulted in the lowest SSD in three out of four cases.

7. Quantum mechanical calculations

7.1. Computational methods and findings

All calculations were performed using Gaussian 09³ for Windows (Gaussian Inc., Wallingford, CT), using DFT B3LYP/6-31G(d,p) method. All calculations were run using IEFPCM solvation model and THF as solvent. (Among the available solvents in Gaussian 09, the properties of THF are the closest to the ones of 2-MeTHF). True minima on the potential energy hypersurface were identified by the presence of no imaginary frequencies and transition state structures were confirmed by finding only one imaginary frequency. All enthalpy and Gibbs free energy values reported in the article have been thermally corrected for conditions 298.15 K and 1 atm. The correction factor can be obtained through a frequency calculation using unscaled frequencies. Computational raw data is listed providing standard orientation Cartesian coordinates, electronic energies; zero-point vibrational energies (ZPVE) and standard thermodynamic quantities at 298.15 K and 1.00 atm. NMR calculations were performed using the Gauge-Independent Atomic Orbital (GIAO) method. To determine nuclear independent chemical shifts (NICSs) ghost atoms (Bq) were added to the optimised structures.

Boltzmann population was calculated according to the following equation:

$$\frac{N_2}{N_1} = e^{\frac{\Delta G_1 - \Delta G_2}{kT}} \tag{4}$$

Where N_1 and N_2 , and ΔG_1 and ΔG_2 (J) are the populations and relative DFT (B3LYP/6-31G(d,p)) Gibbs free energies of two conformers. *T* (K) is the absolute temperature and *k* is the Boltzmann constant (1.38064852 · 10⁻²³ J K⁻¹).

HOMO and LUMO orbitals of **1zw** (**Fig. S111** and **Fig. S112**) were visualised to show the orbital symmetries leading to disrotatory (thermal) and conrotatory (UV) cyclizations. The canonical orbitals were generated using 6-31G(d,p) basis set and were visualized at 0.02 isovalue.

Fig. S111 HOMO orbital of **1zw** visualised to show the lobes on methine carbons with the same signs which leads to disrotatory cyclization under thermal initiation.

Fig. S112 LUMO orbital of **1zw** visualised to show the lobes on methine carbons with opposite signs which leads to disrotatory cyclization under UV initiation.

Scheme S1 (a) Earlier proposed mechanism of the reaction between aromatic aldehydes[4] and an ammonia source and (b) the mechanism found in this work.

Table S2 Calculated relative DFT (B3LYP/6-31G(d,p)) Gibbs free energies (and enthalpies) of the ring closure from the carbanion intermediate. The results show that this step has relatively high Gibbs free energy barrier compared to the already high energy carbanion intermediate. This and the positive reaction Gibbs free energies for the EWG substituted species suggest that the reaction will not progress via this route.

	$ \begin{array}{c} $	$\begin{bmatrix} Ar \\ C \\ N, \Theta, N \\ Ar \end{bmatrix}^{\ddagger} \longrightarrow N$	Ar
	carbanion	anionic TS imida	zolinide
		$\Delta G (\Delta H)$	
p-Substituent		$(kJ mol^{-1})$	
	Carbanion	Anionic TS	Imidazolinide
$-NO_2$	0.00 (0.00)	78.39 (77.89)	46.16 (40.39)
$-SF_5$	0.00 (0.00)	73.74 (67.03)	21.22 (12.95)
$-CF_3$	0.00 (0.00)	70.50 (64.68)	13.94 (7.43)
–Br	0.00 (0.00)	62.89 (60.75)	3.59 (-2.12)
H	0.00 (0.00)	64.58 (59.65)	-1.71 (-5.92)

Fig. S113 NICS values calculated in function of distance from the plane if the five-membered ring in **1zw**, **1**_{TS-IV} and **1**. The ghost atoms for the calculation were placed in the middle of the rings, perpendicularly to it as shown in insert. The red dots illustrate the positions of the 0 Å ghost atoms which were placed 1.19 Å away from the blue carbon atoms.

7.2. Computational raw data

1hb+NH₃

Thermodynamic quantities at 298.15K and 1.00 atm										
Electronic Energy (E)	-5220070.927	kJ∙mol⁻¹								
Enthalpy (H)	-5218969.621	kJ∙mol⁻¹								
Gibbs free energy (G)	-5219269.525	kJ∙mol⁻¹								
ZPVE	1007.588	kJ∙mol⁻¹								
Correction to U	1098.827	kJ∙mol⁻¹								
Correction to H	1101.305	kJ∙mol⁻¹								
Correction to G	801.402	kJ∙mol⁻¹								
S _{total}	1005.905	J·mol ⁻¹ ·K ⁻¹								
S _{vib}	654.750	J·mol ⁻¹ ·K ⁻¹								

Center	Atomic	Atomic	Cart	tesian Coordinates	
Number	Number	type		(Angstroms)	_
			X	Y	Z
1	6	0	1.701685	-0.705808	0.39/212
2	6	0	-1.929551	-0.380814	1.183602
3	6	0	0.064908	0.844864	1.128910
4	1	0	0.913378	-1.35/369	0.005654
5	1	0	-2.054434	-0.054943	2.226211
6	7	0	-0.919639	-0.027816	0.484630
7	7	0	1.446254	0.408216	0.966104
8	6	0	-3.002645	-1.235701	0.643025
9	6	0	-4.066033	-1.607577	1.478084
10	6	0	-2.987918	-1.684115	-0.688559
11	6	0	-5.095439	-2.415029	0.999934
12	1	0	-4.087921	-1.259324	2.506713
13	6	0	-4.011557	-2.489603	-1.169822
14	1	0	-2.168461	-1.385787	-1.332751
15	6	0	-5.067399	-2.855891	-0.324820
16	1	0	-5.918223	-2.694144	1.648441
17	1	0	-4.001782	-2.828339	-2.199976
18	6	0	3.084671	-1.191491	0.224910
19	6	0	3.301263	-2.427832	-0.399474
20	6	0	4.190082	-0.447767	0.671800
21	6	0	4.593466	-2.916867	-0.579656
22	1	0	2.451932	-3.010758	-0.744379
23	6	0	5.479840	-0.930794	0.495462
24	1	0	4.016584	0.506357	1.156788
25	6	0	5.682987	-2.167612	-0.131490
26	1	0	4.753608	-3.875676	-1.059498
27	1	0	6.330430	-0.356712	0.846887
28	6	0	-0.098041	2.252781	0.556803
29	6	0	-0.809633	3.215590	1.280270
30	6	0	0.414546	2.580934	-0.703498
31	6	0	-1.002653	4.492712	0.756101
32	1	0	-1.214343	2.956801	2.254949
33	6	0	0.223492	3.854274	-1.233428
34	1	0	0.968765	1.839200	-1.268915
35	6	0	-0.486874	4.811983	-0.502558
36	1	0	-1.556494	5.236054	1.319204
37	1	0	0.618291	4.102816	-2.212606
38	6	0	7.084561	-2.655186	-0.371614
39	6	0	-6.145118	-3.772718	-0.834042
40	6	0	-0.645148	6.202748	-1.047174
41	9	0	-0.700229	6.217454	-2.399309
42	9	0	0.390041	7.007464	-0.695528
43	9	0	-1.769443	6.803278	-0.592668
44	9	0	-5.814016	-5.077567	-0.668379
45	9	0	-6.376723	-3.597871	-2.154830
46	9	0	-7.319130	-3.585840	-0.190142
47	9	0	7,920756	-2.307231	0.633554
48	9	0	7.144091	-3.999877	-0.497903
49	q	n n	7,610217	-2,133195	-1.507970
50	1	0	-0 113178	0 906155	2 213250
50	1	n	-1 597856	0 538880	2.215250
57	1	0	-0 675737	1 870101	4.851503
52	1	0	-2 2030/1	1 997878	4.822302
53	7	n	-1 52/836	1 43/273	4 /96972
54	,	0	1.524030	1.734273	

$\mathbf{1}_{TS-I}$ -H-NH₃

Thermodynamic qua	Thermodynamic quantities at 298.15K and 1.00 atm									
Electronic Energy (E)	-5219977.075	kJ∙mol⁻¹								
Enthalpy (H)	-5218889.916	kJ∙mol⁻¹								
Gibbs free energy (G)	-5219172.237	kJ∙mol⁻¹								
ZPVE	997.782	kJ∙mol⁻¹								
Correction to U	1084.681	kJ∙mol⁻¹								
Correction to H	1087.160	kJ∙mol⁻¹								
Correction to G	804.839	kJ∙mol⁻¹								
S _{total}	946.931	J∙mol ⁻¹ ∙K ⁻¹								
S _{vib}	595.571	J·mol ⁻¹ ·K ⁻¹								

Contor	Atomic	Atomic	Cartesian Coordinates			
Number	Atomic	Atomic		(Angstroms)		
Number	Number	туре	х	Y	Z	
1	6	0	-1.599537	-0.956260	0.546916	
2	6	0	1.465305	-1.057056	0.110236	
3	6	0	0.008214	0.823288	0.510132	
4	1	0	-0.936686	-1.676999	1.036495	
5	1	0	0.672832	-1.779999	-0.099230	
6	7	0	1.248991	0.181855	0.386155	
7	7	0	-1.252090	0.247635	0.247866	
8	6	0	2.828366	-1.594203	0.009480	
9	6	0	3.013360	-2.933841	-0.377317	
10	6	0	3.967828	-0.819014	0.301144	
11	6	0	4.287974	-3.482829	-0.478036	
12	1	0	2.146015	-3.548875	-0.601536	
13	6	0	5.241170	-1.362319	0.202553	
14	1	0	3.832346	0.211269	0.610462	
15	6	0	5.407771	-2.698720	-0.186785	
16	1	0	4.413578	-4.518571	-0.774304	
17	1	0	6.110512	-0.756396	0.435571	
18	6	0	-2.962249	-1.448261	0.299784	
19	6	0	-3.319512	-2.737892	0.730821	
20	6	0	-3.929841	-0.667871	-0.361434	
21	6	0	-4.602403	-3.233993	0.519612	
22	1	0	-2.583667	-3.353982	1.240725	
23	6	0	-5.210889	-1.158533	-0.573734	
24	1	0	-3.653976	0.323100	-0.704267	
25	6	0	-5.553293	-2.444211	-0.132737	
26	1	0	-4.866935	-4.227572	0.864698	
27	1	0	-5.951062	-0.547168	-1.078985	
28	6	0	0.068723	2.285403	0.191510	
29	6	0	-1.112011	3.049517	0.094452	
30	6	0	1.296068	2.966682	0.057111	
31	6	0	-1.070890	4.420874	-0.133812	
32	1	0	-2.067060	2.546905	0.190916	
33	6	0	1.340292	4.338279	-0.164014	
34	1	0	2.216592	2.399372	0.114867	
35	6	0	0.156544	5.078586	-0.264205	
36	1	0	-1.995804	4.982391	-0.216021	
37	1	0	2.299037	4.835031	-0.276155	
38	6	0	-6.918662	-2.995981	-0.420337	
39	6	0	6.786983	-3.265886	-0.345160	
40	6	0	0.214295	6.561649	-0.447394	
41	9	0	1.246657	6.940957	-1.240995	
42	9	0	-0.917581	7.060541	-0.999675	
43	9	0	0.385648	7.224538	0.730242	
44	9	0	7.295015	-3.039419	-1.584386	
45	9	0	7.665560	-2.722839	0.531141	
46	9	0	6.813838	-4.606655	-0.160210	
47	9	0	-7.864097	-2.027576	-0.449990	
48	9	0	-7.306418	-3.907549	0.502296	
49	9	0	-6.972621	-3.621616	-1.624299	
50	1	0	-0.062054	0.919081	1.975445	
51	1	0	-0.974613	1.456429	3.521623	
52	1	0	0.677380	1.410460	3.616337	
53	1	0	-0.190275	0.001310	3.613831	
54	7	0	-0.142872	0.944272	3.231649	

$1cU+NH_4^+$

Thermodynamic qua	Thermodynamic quantities at 298.15K and 1.00 atm								
Electronic Energy (E)	-5219995.133	kJ∙mol⁻¹							
Enthalpy (H)	-5218894.450	kJ∙mol⁻¹							
Gibbs free energy (G)	-5219183.770	kJ∙mol⁻¹							
ZPVE	1009.237	kJ∙mol⁻¹							
Correction to U	1098.205	kJ∙mol⁻¹							
Correction to H	1100.684	kJ∙mol⁻¹							
Correction to G	811.363	kJ∙mol⁻¹							
S _{total}	970.408	J∙mol ⁻¹ ∙K ⁻¹							
S _{vib}	619.031	J·mol ⁻¹ ·K ⁻¹							

Center	Atomic	Atomic	Cart	esian Coordinates	
Number	Number	type		(Angstroms)	-
1	C	0	1 544208	1 1 5 90 4 4	<u> </u>
1	6	0	1.544296	-1.156044	-0.100255
2	6	0	-1.560211	-1.105542	-0.369720
3	1	0	0.001392	1 066462	-0.172178
4 E	1	0	0.814470	-1.900403	0.123830
5	7	0	-0.882740	-1.004711	-0.758741
7	, 7	0	1 232373	0.107210	-0 210125
, 8	, 6	0	-2 966277	-1 548084	-0 276291
9	6	0	-3 300//89	-2 876295	-0.612579
10	6	0	-4 001482	-0 700098	0.174940
11	6	0	-4.607805	-3.338371	-0.513656
12	1	0	-2.519882	-3.549417	-0.957247
13	6	0	-5.306941	-1.157798	0.274151
14	1	0	-3.755614	0.320686	0.445633
15	6	0	-5.620114	-2.481912	-0.067268
16	1	0	-4.843353	-4.364359	-0.775552
17	1	0	-6.089799	-0.493411	0.625697
18	6	0	2.935830	-1.594196	-0.119520
19	6	0	3.228268	-2.970583	-0.013934
20	6	0	4.021898	-0.692753	-0.181688
21	6	0	4.539382	-3.429356	0.032876
22	1	0	2.410226	-3.684729	0.034763
23	6	0	5.331182	-1.147483	-0.135554
24	1	0	3.813364	0.367548	-0.269244
25	6	0	5.601112	-2.519898	-0.024745
26	1	0	4.741328	-4.491539	0.120795
27	1	0	6.152619	-0.439410	-0.179667
28	6	0	0.012739	2.181037	-0.199584
29	6	0	1.224122	2.911742	-0.199654
30	6	0	-1.187431	2.929788	-0.217418
31	6	0	1.235175	4.299844	-0.205594
32	1	0	2.158339	2.364086	-0.201168
33	6	0	-1.177299	4.318747	-0.215094
34	1	0	-2.130046	2.397421	-0.245143
35	6	0	0.034004	5.020869	-0.209666
36	1	0	2.182338	4.830246	-0.213697
37	1	0	-2.115966	4.863488	-0.233996
38	6	0	7.016239	-3.007504	-0.033395
39	6	0	-7.040129	-2.953419	-0.010695
40	6	0	0.048320	6.512898	-0.143833
41	9	0	-1.053135	7.067434	-0.706705
42	9	0	1.127533	7.047806	-0.766964
43	9	0	0.089226	6.978044	1.137566
44	9	0	-7.723333	-2.675243	-1.152957
45	9	0	-7.734067	-2.367236	0.995782
46	9	0	-7.130713	-4.292762	0.169338
47	9	0	7.859216	-2.141861	0.581867
48	9	0	7.151766	-4.204755	0.585993
49	9	0	7.500411	-3.173592	-1.293474
50	1	0	-0.008515	0.721808	1.779969
51	1	0	0.784324	1.023472	3.251504
52	1	0	-0.880668	1.078595	3.188061
53	1	0	-0.089515	-0.383302	3.060407
54	7	0	-0.047789	0.610232	2.826632

1cU-H-NH₃

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-5220021.741	kJ∙mol⁻¹			
Enthalpy (H)	-5218924.960	kJ∙mol⁻¹			
Gibbs free energy (G)	-5219205.097	kJ∙mol⁻¹			
ZPVE	1007.752	kJ∙mol⁻¹			
Correction to U	1094.303	kJ∙mol⁻¹			
Correction to H	1096.781	kJ∙mol⁻¹			
Correction to G	816.644	kJ∙mol⁻¹			
S _{total}	939.609	J·mol ⁻¹ ·K ⁻¹			
S _{vib}	588.216	J·mol ⁻¹ ·K ⁻¹			

Conton	A to main	A	Cartesian Coordinates (Angstroms)		
Number	Atomic	Atomic			
Number	Number	type	х	Y	Z
1	6	0	1.468193	-1.157487	-0.130143
2	6	0	-1.647605	-1.155559	-0.326667
3	6	0	-0.103085	0.684992	-0.148108
4	1	0	0.722700	-1.943157	-0.091210
5	1	0	-0.951898	-1.923099	-0.664994
6	7	0	-1.320859	0.086668	-0.111393
7	7	0	1.139480	0.125957	-0.142417
8	6	0	-3.031702	-1.603997	-0.207177
9	6	0	-3.350688	-2.949072	-0.484623
10	6	0	-4.076740	-0.742471	0.190780
11	6	0	-4.655453	-3.416505	-0.377637
12	1	0	-2.560623	-3.631485	-0.786845
13	6	0	-5.379538	-1.205718	0.298166
14	1	0	-3.841324	0.292661	0.410513
15	6	0	-5.678123	-2.547136	0.016521
16	1	0	-4.880862	-4.455535	-0.592546
17	1	0	-6.171546	-0.531864	0.608486
18	6	0	2.847671	-1.592679	-0.096508
19	6	0	3.147764	-2.924118	0.281757
20	6	0	3.934813	-0.760406	-0.464814
21	6	0	4.454844	-3.384625	0.330463
22	1	0	2.335070	-3.591279	0.555087
23	6	0	5.243644	-1.221201	-0.413099
24	1	0	3.736940	0.238420	-0.840248
25	6	0	5.517104	-2.533090	-0.004947
26	1	0	4.658353	-4.404327	0.640483
27	1	0	6.058958	-0.566480	-0.702895
28	6	0	-0.133537	2.161199	-0.143820
29	6	0	0.935778	2.92/998	-0.664192
30	6	0	-1.252659	2.8/0311	0.347967
31	6	0	0.907041	4.318505	-0.654396
32	1	0	1.778644	2.419233	-1.120625
33	6	0	-1.282/81	4.257733	0.360946
34	1	0	-2.096779	2.306183	0.725404
35	6	0	-0.200790	4.997406	-0.135351
36	1	0	1./35062	4.878450	-1.077096
37	1	0	-2.152049	4.774015	0.755252
38	6	0	6.921374	-3.049434	-0.005861
39	6	0	-7.095911	-3.026302	0.076355
40	6	0	-0.206050	6.491007	-0.063228
41	9	0	-1.45/932	7.005071	-0.116044
42	9	0	0.303321	6.055310	-1.009525
45	9	0	0.544769	0.955255	1.095112
44	9	0	7 200175	-2.010151	-1.069256
45	9	0	-7.609175	-2.590155	0.220020
40	9	0	7 820271	-4.333092	0.320939
47	9	0	7.030271	-2.003004	0.130433
40	9	0	7 255689	-3.579540	-1 1812/6
49	5	0	2 080233	0 9//272	-1.101240
50	1	0	2.0053333	1 112250	1 571000
57	1	0	2.040333 2.702001	1.1122JJ 2 171567	1 370856
52	1	0	2.703901	1 305/22	2.373650
54	7	0	2.697471	1.467614	1.561942

1zw+NH₃

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-5220055.543	kJ∙mol⁻¹			
Enthalpy (H)	-5218954.160	kJ∙mol⁻¹			
Gibbs free energy (G)	-5219235.743	kJ∙mol⁻¹			
ZPVE	1011.302	kJ∙mol⁻¹			
Correction to U	1098.905	kJ∙mol⁻¹			
Correction to H	1101.383	kJ∙mol⁻¹			
Correction to G	819.800	kJ∙mol⁻¹			
S _{total}	944.459	J·mol ⁻¹ ·K ⁻¹			
S _{vib}	593.074	J·mol ⁻¹ ·K ⁻¹			

Contor	Atomic	Atomio	Cartesian Coordinates		
Numbor	Atomic	Atomic	(Angstroms)		
Number	Number	type	х	Y	Z
1	6	0	1.686837	-0.486088	-0.769679
2	6	0	-1.254027	-1.183256	-0.477004
3	6	0	-0.203306	0.976772	-0.320462
4	1	0	1.124618	-0.991777	-1.541382
5	1	0	-0.375016	-1.787871	-0.705586
6	7	0	-1.231724	0.115181	-0.365036
7	7	0	1.135618	0.621917	-0.263408
8	6	0	-2.484216	-1.936343	-0.267224
9	6	0	-2.448023	-3.345042	-0.316831
10	6	0	-3.724308	-1.309717	-0.020512
11	6	0	-3.599090	-4.100019	-0.125323
12	1	0	-1.502145	-3.847200	-0.500839
13	6	0	-4.875527	-2.061103	0.164907
14	1	0	-3.764015	-0.227111	0.017118
15	6	0	-4.819906	-3.461202	0.117186
16	1	0	-3.550968	-5.183224	-0.157969
17	1	0	-5.821895	-1.566461	0.355995
18	6	0	2.998191	-0.988167	-0.463139
19	6	0	3.518859	-2.021184	-1.281870
20	6	0	3.797733	-0.530040	0.610987
21	6	0	4.780242	-2.549068	-1.056746
22	1	0	2.918680	-2.401947	-2.102932
23	6	0	5.062346	-1.058235	0.830390
24	1	0	3.416989	0.230438	1.281118
25	6	0	5.563982	-2.067991	0.000626
26	1	0	5.157881	-3.340322	-1.695317
27	1	0	5.658816	-0.698219	1.661559
28	6	0	-0.509785	2.408849	-0.258446
29	6	0	0.416476	3.384102	-0.687108
30	6	0	-1.768774	2.854351	0.200153
31	6	0	0.115760	4.741245	-0.618926
32	1	0	1.367816	3.076888	-1.108378
33	6	0	-2.073237	4.206292	0.257568
34	1	0	-2.496950	2.117623	0.516818
35	6	0	-1.130090	5.161726	-0.145488
36	1	0	0.839296	5.472527	-0.962812
37	1	0	-3.045405	4.525842	0.618071
38	6	0	6.950489	-2.599623	0.204780
39	6	0	-6.074481	-4.268576	0.261858
40	6	0	-1.439024	6.622166	-0.018168
41	9	0	-2.751629	6.887018	-0.220077
42	9	0	-0.737334	7.374666	-0.898007
43	9	0	-1.140671	7.102076	1.218746
44	9	0	-6.671247	-4.508420	-0.935545
45	9	0	-6.998758	-3.644667	1.029848
46	9	0	-5.841539	-5.480582	0.819445
47	9	0	7.370038	-2.460618	1.483608
48	9	0	7.042497	-3.913707	-0.108966
49	9	0	7.862499	-1.957901	-0.571607
50	1	õ	1.722430	1.252643	0.335030
51	- 1	0 0	2.404251	2.135591	2.603170
52	1	0 0	3.415895	2,753453	1.486606
53	- 1	0	1.878988	3.281616	1.572489
54	7	0	2.456581	2.445423	1.634306
-		-			

1_{TS-IV} +NH₃

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-5220038.012	kJ∙mol⁻¹			
Enthalpy (H)	-5218939.450	kJ∙mol⁻¹			
Gibbs free energy (G)	-5219214.023	kJ∙mol⁻¹			
ZPVE	1010.471	kJ∙mol⁻¹			
Correction to U	1096.084	kJ∙mol⁻¹			
Correction to H	1098.562	kJ∙mol⁻¹			
Correction to G	823.989	kJ∙mol⁻¹			
S _{total}	920.949	J∙mol ⁻¹ ∙K ⁻¹			
S _{vib}	571.195	J·mol ⁻¹ ·K ⁻¹			

Contor	Atomic	Atomic	Cartesian Coordinates		
Number	Atomic	Atomic		(Angstroms)	
Number	Number	type	х	Y	Z
1	6	0	0.206813	1.183850	-1.550651
2	6	0	0.271031	-1.352178	-1.446905
3	6	0	-1.658532	-0.196886	-0.878179
4	1	0	0.341626	0.945957	-2.595698
5	1	0	0.426988	-1.017812	-2.463706
6	7	0	-0.945352	-1.303621	-0.896972
7	7	0	-1.061990	1.031574	-1.029476
8	6	0	1.295446	-2.242089	-0.913036
9	6	0	2.475668	-2.471252	-1.646702
10	6	0	1.153022	-2.867982	0.342787
11	6	0	3.476182	-3.299521	-1.151640
12	1	0	2.605967	-1.990299	-2.612070
13	6	0	2.147213	-3.701285	0.835873
14	1	0	0.252369	-2.687638	0.919267
15	- 6	0	3,315319	-3.918182	0.092451
16	1	0	4.381207	-3.464302	-1.725468
17	1	0	2.028196	-4.175781	1.804447
18	- 6	0	1 153426	2 093943	-0.957176
10	6	0	2 219588	2.000040	-1 737811
20	6	0	1 101363	2.003011	0.406758
20	6	0	3 16//39	3 461038	-1 19/965
21	1	0	2 293802	2 317938	-2 783188
22	6	0	2.233002	2.317550	0.946541
23	0	0	0.3306/1	2.556514	1 047080
24	1	0	2 090502	2.037735	0.151621
25	0	0	2 000333	2 020110	1 012021
20	1	0	1 099409	2,600450	1 005 921
27	1	0	2 000207	0.245700	0 52/171
20	6	0	-3.069507	-0.245766	-0.524171
29	0	0	-3.901318	1 269509	-0.807900
5U 21	6	0	-3.006604	-1.306306	0.140050
21	0	0	-5.509094	1 640202	-0.522567
32	1	0	-3.369631	1.049292	-1.429200
22	0	0	-4.952102	-1.42/101	0.491125
34	1	0	-2.942107	-2.180453	0.392540
35	0	0	-5.807950	-0.308032	0.159548
20	1	0	-5.975974	1.551254	-0.800977
37	1	0	-5.341095	-2.290111	1.010944
20	6	0	4.004514	4.615011	0.720720
39	6	0	4.302098	-4.853939	0.619591
40	0	0	-7.246465	-0.41/210	0.561505
41	9	0	-7.752328	-1.0/1/15	0.520503
42	9	0	-8.034701	0.370254	-0.18/08/
43	9	0	-7.413511	0.000780	1.862334
44	9	0	4.042906	-0.155035	0.396009
45	9	0	4.525367	-4.729349	1.958820
46	9	U	5.5/1243	-4.0495/9	0.048197
47	9	U	4.252328	4.03/425	2.050268
48	9	U	5.2/8534	4.721933	0.12/564
49	9	U	3.663/99	6.105989	0.563556
50	1	U	-1.4/0948	1.822961	-0.480812
51	1	U	-2.629326	3.146/89	1.248918
52	1	U	-1.380412	3.984247	0.619/36
53	1	0	-2./95081	3.899880	-0.183674
54	7	0	-2.144041	3.355593	0.378670
$1+NH_3$

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-5220157.368	kJ∙mol⁻¹			
Enthalpy (H)	-5219050.448	kJ∙mol⁻¹			
Gibbs free energy (G)	-5219332.512	kJ∙mol⁻¹			
ZPVE	1018.012	kJ∙mol⁻¹			
Correction to U	1104.441	kJ∙mol⁻¹			
Correction to H	1106.920	kJ∙mol⁻¹			
Correction to G	824.856	kJ∙mol⁻¹			
S _{total}	946.069	J∙mol ⁻¹ ∙K ⁻¹			
S _{vib}	598.630	J·mol ⁻¹ ·K ⁻¹			

Contor	Atomic	Atomic	Cartesian Coordinates		
Center	Atomic	Atomic		(Angstroms)	
Number	Number	туре	х	Ŷ	z
1	6	0	0.176429	-1.285875	1.741835
2	6	0	0.086484	0.268407	2.088599
3	6	0	-1.831691	-0.570788	1.140037
4	1	0	0.096173	-1.815949	2.702441
5	1	0	0.367452	0.411774	3.136098
6	7	0	-1.352829	0.472757	1.902999
7	1	0	-1.706529	1.437160	1.793984
8	7	0	-1.036777	-1.579237	0.969869
9	6	0	0.946347	1.196338	1.243621
10	6	0	2.180105	1.637648	1.739856
11	6	0	0.551804	1.614226	-0.034974
12	6	0	3.005143	2.465842	0.982578
13	1	0	2.500257	1.330284	2.731487
14	6	0	1.368884	2.444261	-0.798981
15	1	0	-0.403058	1.293993	-0.437680
16	6	0	2.599736	2.869951	-0.291892
17	1	0	3.959068	2.795632	1.379532
18	1	0	1.055087	2.753657	-1.790051
19	6	0	1.454765	-1.749113	1.075713
20	6	0	2.580306	-2.050250	1.853642
21	6	0	1.544537	-1.876612	-0.315509
22	6	0	3.773205	-2.456768	1.260380
23	1	0	2.523719	-1.969354	2.935936
24	6	0	2.731530	-2.286667	-0.917640
25	1	0	0.670910	-1.662234	-0.920761
26	6	0	3.850273	-2.573580	-0.130055
27	1	0	4.639024	-2.682432	1.873187
28	1	0	2.791506	-2.378207	-1.996944
29	6	0	-3.205357	-0.542467	0.584924
30	6	0	-3.576409	-1.496763	-0.375185
31	6	0	-4.147049	0.408667	1.002889
32	6	0	-4.856934	-1.494286	-0.914975
33	1	0	-2.845169	-2.232426	-0.688959
34	6	0	-5.432311	0.411984	0.465082
35	1	0	-3.881615	1.146141	1.751539
36	6	0	-5./8/3/6	-0.536602	-0.496056
37	1	0	-5.133332	-2.22/460	-1.664668
38	1	0	-6.155183	1.152242	0.789342
39	6	0	5.110962	-3.068/24	-0.777514
40	6	0	3.454818	3.811204	-1.090769
41	6	0	-7.188623	-0.566261	-1.039525
42	9	0	-7.760734	0.659587	-1.037490
43	9	0	-7.997258	-1.3/2388	-0.307571
44	9	0	-7.230070	-1.028542	-2.310006
45	9	0	3.150808	5.110/50	-0.839507
40	9	0	3.300567	3.032450	-2.422879
47	9	0	4.770551 E 204129	2 510612	-0.015910
40 10	9	0	5.304130 6 200515	-2.319013	-1.333125
49 50	9	0	5 005650	-2.754500 -1 11110	-0.030454
50	5	0	-7 880831	3 607200	1 0/6015
52	1	0	-2.889790	3 769562	2 585566
52	1	0	-1 307796	3 793759	1 370131
54	7	0	-2.155671	3.333680	1.695804
- ·	-	-			

1cU

Thermodynamic quantities at 298.15K and 1.00 atm				
Electronic Energy (E)	-5070269.258	kJ∙mol⁻¹		
Enthalpy (H)	-5069312.753	kJ∙mol⁻¹		
Gibbs free energy (G)	-5069572.215	kJ∙mol⁻¹		
ZPVE	875.762	kJ∙mol⁻¹		
Correction to U	954.024	kJ∙mol⁻¹		
Correction to H	956.505	kJ∙mol⁻¹		
Correction to G	697.043	kJ∙mol⁻¹		
S _{total}	870.255	J·mol ⁻¹ ·K ⁻¹		
S _{vib}	519.490	J·mol ⁻¹ ·K ⁻¹		

Contor	Atomic	Atomic	Cartesian Coordinates		
Number	Number	Atomic		(Angstroms)	
Number	Number	type	Х	Y	Z
1	6	0	-1.545728	-1.112287	-0.241792
2	6	0	1.543162	-1.114246	0.147907
3	6	0	-0.000602	0.718812	-0.042847
4	1	0	-0.817023	-1.897401	-0.444196
5	1	0	0.812992	-1.901049	0.337679
6	7	0	1.230956	0.144408	-0.019823
7	7	0	-1.232551	0.145006	-0.066404
8	6	0	2.929535	-1.551568	0.171827
9	6	0	3.232243	-2.905395	0.444477
10	6	0	4.013158	-0.678556	-0.085648
11	6	0	4.542682	-3.363587	0.471915
12	1	0	2.418753	-3.600170	0.637605
13	6	0	5.322179	-1.133525	-0.058638
14	1	0	3.797122	0.359333	-0.312919
15	6	0	5.601015	-2.481325	0.218809
16	1	0	4.749018	-4.407915	0.682598
17	1	0	6.138386	-0.447693	-0.263327
18	6	0	-2.932089	-1.550388	-0.253592
19	6	0	-3.237642	-2.901703	-0.534062
20	6	0	-4.013131	-0.678572	0.019521
21	6	0	-4.548295	-3.360787	-0.547162
22	1	0	-2.426827	-3.593170	-0.749084
23	-	0	-5 321851	-1 134091	0.006014
23	1	0	-3 794921	0 359680	0 243109
25	- 6	0	-5 603728	-2 479972	-0 279286
26	1	0	-4 757651	-4 401410	-0 772077
20	1	0	-6 136730	-0.446918	0.2123/13
27	6	0	-0.000550	2 19/3/5	-0.037/32
20	6	0	-1 203773	2.134545	-0.092079
30	6	0	1 203/63	2.557057	0.052075
30	6	0	-1 205271	1 325726	-0.021704
22	1	0	2 1/0276	2 206702	-0.081704
22	1	0	-2.140270	2.330733	-0.148500
24	1	0	2 1 40051	4.524528	0.020331
24	1	0	2.140051	2.393032 E 039703	0.004145
35	1	0	-0.000020	3.036702	-0.030370
30	1	0	-2.147241	4.803043	-0.127280
27	1	0	2.140450	4.001445	0.056000
50 20	0	0	-7.011256	-2.970041	-0.224506
39	6	0	7.014987	-2.954033	0.308783
40	0	0	0.002293	0.527990	0.040257
41	9	0	1.088537	7.075202	-0.564751
42	9	0	0.019529	6.998208	1.321319
43	9	U	-1.093308	7.079336	-0.541074
44	9	U	7.538803	-2.805823	1.558244
45	9	U	7.842320	-2.2/3305	-0.523394
46	9	U	7.141205	-4.2/0309	0.005826
4/	9	U	-7.902865	-2.049818	-0.65/982
48	9	U	-7.198346	-4.090151	-0.9/5037
49	9	0	-7.402463	-3.304434	1.039405

1cS

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-5070266.680	kJ∙mol⁻¹			
Enthalpy (H)	-5069310.556	kJ∙mol⁻¹			
Gibbs free energy (G)	-5069570.190	kJ∙mol⁻¹			
ZPVE	875.497	kJ∙mol⁻¹			
Correction to U	953.646	kJ∙mol⁻¹			
Correction to H	956.124	kJ∙mol⁻¹			
Correction to G	696.489	kJ∙mol⁻¹			
S _{total}	870.845	J∙mol ⁻¹ ∙K ⁻¹			
S _{vib}	520.042	J·mol ⁻¹ ·K ⁻¹			

Contor	Atomic	Atomic	Cartesian Coordinates		
Number	Atomic	Atomic		(Angstroms)	
Number	Number	type	х	Y	Z
1	6	0	-1.357628	-1.131953	-0.042978
2	6	0	2.273650	0.627091	-0.162004
3	6	0	-0.104326	0.863078	-0.007031
4	1	0	-0.455912	-1.750852	-0.075988
5	1	0	2.483595	1.666400	-0.432959
6	7	0	1.062062	0.175104	0.036523
7	7	0	-1.285643	0.172720	-0.019146
8	6	0	3.430897	-0.242898	-0.089755
9	6	0	4.717223	0.269160	-0.381464
10	6	0	3.339476	-1.608016	0.278116
11	6	0	5.848122	-0.533529	-0.319008
12	1	0	4.818576	1.315210	-0.659575
13	6	0	4.467029	-2.410506	0.339058
14	1	0	2.362672	-2.012994	0.517538
15	-	0	5.734828	-1.882210	0.044316
16	1	0	6 823892	-0 115514	-0 544416
17	1	0	4 374344	-3 452984	0 627645
18	6	0	-2 626914	-1 828789	-0 022484
10	6	0	-2 653309	-3 242346	-0.022404
20	6	0	-3 872/05	-1 156/81	0.002555
20	6	0	-3 8/05//	-3 046673	-0.077200
21	1	0	-1 712016	-3.78/5//	-0.1395/1
22	6	0	-1.712910 E 067272	1 957017	0.155541
23	1	0	-3.007273	-1.037917	0.031204
24	1 6	0	-5.071042 E 07017E	-0.073423	0.101703
25	0	0	-5.0/01/5	-3.201273	-0.014822
20	1	0	-5.042202	-5.050490	-0.150745
27	I C	0	-0.009832	-1.321129	0.099004
28	6	0	-0.248304	2.330369	-0.017452
29	0	0	-1.409181	2.926873	-0.570053
30	6	0	0.701655	3.207588	0.557683
31	6	0	-1.597970	4.300489	-0.568764
32	1	0	-2.159118	2.278790	-1.007208
33	6	0	0.512226	4.585171	0.56/1/5
34	1	0	1.583788	2.805920	1.040416
35	6	0	-0.632239	5.148474	-0.006968
36	1	0	-2.490968	4.723389	-1.018839
37	1	0	1.257665	5.226709	1.026200
38	6	0	-6.357097	-4.014222	0.051246
39	6	0	6.936506	-2.767786	0.055799
40	6	0	-0.861902	6.622871	0.041017
41	9	0	0.295333	7.326679	0.110565
42	9	0	-1.599149	7.004966	1.122077
43	9	0	-1.537794	7.076642	-1.045380
44	9	0	7.129494	-3.408428	-1.132129
45	9	0	6.848123	-3.746198	0.992291
46	9	0	8.082910	-2.085349	0.301368
47	9	0	-7.379216	-3.344953	-0.540415
48	9	0	-6.278302	-5.228749	-0.548105
49	9	0	-6.763749	-4.255068	1.330506

1cW

Thermodynamic quantities at 298.15K and 1.00 atm				
Electronic Energy (E)	-5070254.306	kJ∙mol⁻¹		
Enthalpy (H)	-5069299.067	kJ∙mol⁻¹		
Gibbs free energy (G)	-5069562.889	kJ∙mol⁻¹		
ZPVE	874.029	kJ∙mol⁻¹		
Correction to U	952.761	kJ∙mol⁻¹		
Correction to H	955.239	kJ∙mol⁻¹		
Correction to G	691.417	kJ∙mol⁻¹		
S _{total}	884.887	J∙mol ⁻¹ ∙K ⁻¹		
S _{vib}	534.171	J·mol ⁻¹ ·K ⁻¹		

Center	Atomic	Atomic	Cart	esian Coordinates	
Number	Number	type		(Angstroms)	
Number	Humber	1960	Х	Y	Z
1	6	0	2.343147	0.123899	-0.074316
2	6	0	-2.366242	0.165929	0.013039
3	6	0	-0.008750	0.363254	-0.025948
4	1	0	2.540754	1.200801	-0.115652
5	1	0	-2.547089	1.245233	0.066747
6	7	0	-1.156928	-0.347150	-0.034153
7	7	0	1.125637	-0.369982	-0.032480
8	6	0	-3.540727	-0.674485	0.009353
9	6	0	-4.831325	-0.094581	0.088078
10	6	0	-3.469399	-2.089037	-0.075737
11	6	0	-5.978643	-0.874434	0.089109
12	1	0	-4.920081	0.987392	0.147703
13	6	0	-4.614603	-2.867733	-0.073836
14	1	0	-2.490158	-2.549764	-0.145452
15	6	0	-5.884609	-2.271228	0.006269
16	1	0	-6.954596	-0.402685	0.147380
17	1	0	-4.533117	-3.948201	-0.143436
18	6	0	3.504874	-0.733947	-0.078805
19	6	0	4.803161	-0.172788	-0.161802
20	6	0	3,412779	-2.148031	-0.002668
21	6	0	5,939394	-0.969176	-0.168930
22	1	0	4.907106	0.907590	-0.225511
23	6	0	4.546484	-2.942861	-0.010476
24	1	0	2 426742	-2 595106	0.060451
25	-	0	5 824979	-2 364543	-0.096284
26	1	0	6 921374	-0 512293	-0 239252
27	1	0	1 1/18877	-4 023093	0.043571
27	6	0	0.006224	1 860861	-0.005599
20	6	0	0.580336	2 566075	1 067968
20	6	0	-0 557/22	2.500075	-1.055181
21	6	0	0.59/7422	2.009089	1 00/663
27	1	0	1 01/966	2 012214	1 20/250
52 22	1	0	1.014000	2.012214	1.094559
22	1	0	-0.546401	4.001520	-1.057500
34 25	I C	0	-1.007067	2.089201	-1.895421
30	1	0	0.027925	4.081108	0.040202
27	1	0	1.055209	4.462595	1.957070
37	I C	0	-0.990049	4.559495	-1.850518
38	0	0	7.041957	-3.223529	-0.037058
39	6	0	-7.112342	-3.113853	0.077282
40	6	0	0.093329	6.1/8/28	0.035237
41	9	0	-0.952921	6.736443	-0.619997
42	9	U	1.215619	6.641504	-0.5/6612
43	9	U	0.102446	6.696327	1.286805
44	9	0	-7.454302	-3.446548	1.356079
45	9	0	-6.974654	-4.291043	-0.584505
46	9	0	-8.200901	-2.490974	-0.443529
47	9	0	6.859601	-4.424211	-0.645113
48	9	0	8.119090	-2.641984	-0.623284
49	9	0	7.425029	-3.513708	1.240400

1

Thermodynamic quantities at 298.15K and 1.00 atm

Electronic Energy (E)	-5071624.701	kJ∙mol⁻¹
Enthalpy (H)	-5070624.165	kJ∙mol⁻¹
Gibbs free energy (G)	-5070878.945	kJ∙mol⁻¹
ZPVE	921.936	kJ∙mol⁻¹
Correction to U	998.056	kJ∙mol⁻¹
Correction to H	1000.537	kJ∙mol⁻¹
Correction to G	745.756	kJ∙mol⁻¹
S _{total}	854.553	J∙mol ⁻¹ ∙K ⁻¹
S _{vib}	507.979	J·mol ⁻¹ ·K ⁻¹

Contor	Atomic	Atomic	Cartesian Coordinates		es
Number	Atomic	Atomic		(Angstroms)	
Number	Number	type	х	Y	Z
1	6	0	0.075437	-1.165024	1.844070
2	6	0	0.053944	0.392907	2.182696
3	6	0	-1.914878	-0.382241	1.256223
4	1	0	-0.015302	-1.686995	2.807127
5	1	0	0.356610	0.531757	3.223694
6	7	0	-1.386444	0.643771	2.031133
7	1	0	-1.675664	1.593903	1.832184
8	7	0	-1.160013	-1.414964	1.090113
9	6	0	0.921285	1.287572	1.313486
10	6	0	2.165817	1.714851	1.795317
11	6	0	0.524194	1.690922	0.031300
12	6	0	2,998361	2.516807	1.019433
13	1	0	2,487348	1.417237	2,789241
14	6	0	1.349085	2.496701	-0.750501
15	1	0	-0.434833	1.376306	-0.366904
16	6	0	2 589349	2 909221	-0 257949
10	1	0	3 960718	2.305221	1 404439
18	- 1	0	1 033053	2 797406	-1 743215
10	6	0	1 323162	-1 682070	1 159863
20	6	0	2 447401	-2 02//33	1 922360
20	6	0	1 38/670	-2.024433	-0 231780
21	6	0	2 612880	-1.010013	1 211722
22	1	0	2 /12151	1 027267	2 005010
23	1	0	2.412131	-1.937207	0.950610
24	1	0	2.344173	-2.279002	-0.830019
25	1	0	2 662409	2 6070943	-0.823839
20	1	0	3.002408	-2.007989	-0.079129
27	1	0	4.470002	-2.756592	1.911010
20	1	0	2.302/32	-2.379113	-1.950092
29	6	0	-3.284454	-0.281349	0.706703
30	6	0	-3.077159	-1.152269	-0.321278
31	6	0	-4.199306	0.004538	1.191015
32	0	0	-4.954683	-1.072014	-0.861995
33	1	0	-2.966635	-1.883393	-0.688794
34	6	0	-5.480871	0.746270	0.651133
35	1	0	-3.924994	1.326807	2.005149
36	6	0	-5.857691	-0.118837	-0.378003
37	1	0	-5.248621	-1./39/8/	-1.664078
38	1	0	-6.182535	1.481/05	1.028144
39	6	0	4.892890	-3.159364	-0.740115
40	6	0	3.459194	3.823784	-1.073049
41	6	0	-7.256460	-0.065590	-0.928206
42	9	0	-7.786792	1.175456	-0.846033
43	9	0	-8.093842	-0.891798	-0.254380
44	9	0	-7.303983	-0.439793	-2.226627
45	9	0	3.235238	5.129871	-0.779719
46	9	0	3.243386	3.683154	-2.400623
47	9	0	4.775146	3.601206	-0.852434
48	9	0	5.069978	-2.659146	-1.984982
49	9	0	6.015859	-2.888880	-0.035032
50	9	0	4.836923	-4.509239	-0.872797

$3hb+NH_3$

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-4176196.408	kJ∙mol⁻¹			
Enthalpy (H)	-4175120.126	kJ∙mol⁻¹			
Gibbs free energy (G)	-4175393.923	kJ∙mol⁻¹			
ZPVE	991.501	kJ∙mol⁻¹			
Correction to U	1073.801	kJ∙mol⁻¹			
Correction to H	1076.282	kJ∙mol⁻¹			
Correction to G	802.485	kJ∙mol⁻¹			
S _{total}	918.334	J∙mol ⁻¹ ∙K ⁻¹			
S _{vib}	572.447	J·mol ⁻¹ ·K ⁻¹			

Number Number type X V	7
Number Number type x v	7
<u>^</u> 1	~ ~
1 6 0 1.726119 -0.698661 0	0.311996
2 6 0 -1.910662 -0.399619 1	1.058966
3 6 0 0.068146 0.850988 0).993057
4 1 0 0.950246 -1.385182 -0	0.041768
5 1 0 -2.045435 -0.063689 2	2.096364
6 7 0 -0.903409 -0.042668 0).357999
7 7 0 1.454657 0.435455 0).831247
8 6 0 -2.964955 -1.278233 0	0.518220
9 6 0 -4.020764 -1.671472 1	1.355661
10 6 0 -2.932982 -1.728694 -0).813718
11 6 0 -5.030264 -2.503782 0).882981
12 1 0 -4.050646 -1.323151 2	2.383491
13 6 0 -3.932630 -2.558444 -1	1.300179
14 1 0 -2.116771 -1.414848 -1	1.454021
15 6 0 -4.968325 -2.934602 -0).440737
16 1 0 -5.850664 -2.817362 1	1.515039
17 1 0 -3.926613 -2.914913 -2	2.322006
18 6 0 3.119833 -1.158522 0	0.153820
19 6 0 3.361112 -2.425960 -0	0.399219
20 6 0 4.207039 -0.356323 (0.544180
21 6 0 4.660634 -2.894689 -().563111
22 1 0 2.524771 -3.048659 -().701955
23 6 0 5.508831 -0.809079 (0.387081
24 1 0 4.010034 0.621177 ().968921
25 6 0 5.715942 -2.075815 -(0.165887
26 1 0 4.863666 -3.869255 -().987331
27 1 0 6.358264 -0.206139 (0.680748
28 6 0 -0.118216 2.247099 (0.400602
29 6 0 -0.843041 3.208500 1	1.115925
30 6 0 0.392970 2.562496 -().865246
31 6 0 -1.052604 4.476824 ().582219
32 1 0 -1.240071 2.955246	2.094694
33 6 0 0.191072 3.823985 -1	1.414199
34 1 0 0.958477 1.820820 -1	1.418489
35 6 0 -0.530371 4.764740 -(0.678131
36 1 0 -1.604869 5.235042 1	1.122237
37 1 0 0.580390 4.086910 -2	2.389223
38 1 0 -0.108991 0.924397 2	2.076583
39 1 0 -1.574505 0.542109 4	1.783272
40 1 0 -0.669344 1.884096 4	1.690606
41 1 0 -2.286350 1.990444 4	1.615754
42 7 0 -1.494505 1.434142 4	1.298711
43 7 0 -0.744028 6.098230 -1	1.247202
44 8 0 -0.279210 6.334679 -2	2.364742
45 8 0 -1.378837 6.919717 -(0.581406
46 7 0 7.090013 -2.560018 -().334221
47 8 0 8.011736 -1.824038 0	0.024502
48 8 0 7.255139 -3.678668 -(0.825608
49 7 0 -6.028323 -3.812334 -().949968
50 8 0 -6.931947 -4.138254 -().177496
51 8 0 -5.961096 -4.179826 -2	2.124571

$3cU+NH_4^+$

Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-4176158.313	kJ∙mol⁻¹				
Enthalpy (H)	-4175080.813	kJ∙mol⁻¹				
Gibbs free energy (G)	-4175339.731	kJ∙mol⁻¹				
ZPVE	995.158	kJ∙mol⁻¹				
Correction to U	1075.021	kJ∙mol⁻¹				
Correction to H	1077.500	kJ∙mol⁻¹				
Correction to G	818.581	kJ∙mol⁻¹				
S _{total}	868.439	J∙mol ⁻¹ ∙K ⁻¹				
S _{vib}	522.464	J·mol ⁻¹ ·K ⁻¹				

Conton	A t a m i a	A t a u u i a	Cartesian Coordinates		
Center	Atomic	Atomic		(Angstroms)	
Number	Number	туре	х	Ŷ	Z
1	6	0	1.490516	-1.113988	-0.202639
2	6	0	-1.597814	-0.981697	-0.521573
3	6	0	0.002411	0.777417	-0.229368
4	1	0	0.731399	-1.894834	-0.152616
5	1	0	-0.916771	-1.692359	-0.990179
6	7	0	-1.253803	0.228546	-0.185964
7	7	0	1.218921	0.162471	-0.261688
8	6	0	-2.967017	-1.447044	-0.366162
9	6	0	-3.311351	-2.744146	-0.808698
10	6	0	-3.973591	-0.650811	0.228911
11	6	0	-4.601533	-3.231294	-0.672317
12	1	0	-2.550521	-3.369418	-1.266798
13	6	0	-5.265538	-1.124411	0.369533
14	1	0	-3.714791	0.343604	0.573519
15	6	0	-5.572238	-2.416091	-0.080591
16	1	0	-4.870394	-4.223180	-1.012021
17	1	0	-6.042577	-0.520031	0.819990
18	6	0	2.860725	-1.587612	-0.147014
19	6	0	3.108876	-2.974399	-0.012615
20	6	0	3 973350	-0 715295	-0 232932
20	6	0	4.399326	-3.473268	0.045646
22	1	0	2,268897	-3.660596	0.047904
23	- 6	0	5 266356	-1 201138	-0 176774
23	1	0 0	3 794252	0 347082	-0 349055
25	- 6	0	5 475069	-2 581064	-0 034884
25	1	0	4 591533	-4 533205	0.054004
20	1	0 0	6 120634	-0 539157	-0 241366
27	6	0	0.120034	2 2/8226	-0 229138
20	6	0	1 267253	2.240220	-0 264909
30	6	0 0	-1 155857	3 015061	-0 195308
30	6	0	1 305604	4 339287	-0 258480
32	1	0 0	2 189636	2 392310	-0 302545
32	6	0	-1 127283	4 397871	-0 178820
34	1	0 0	-2 106097	2 / 96598	-0 192051
35	6	0 0	0 105880	5.063188	-0 208522
36	1	0 0	2 247176	4 873025	-0 289654
37	1	0	-2 042588	4.975786	-0 151949
38	1	0 0	0.052816	0.895553	1 877186
39	- 1	0	0 909905	1 264008	3 281350
40	1	0 0	-0 756977	1 206757	3 322841
41	- 1	0	0 122498	-0 201397	3 151782
42	7	0 0	0.081911	0 791433	2 911852
43	, 7	0 0	0 141358	6 503774	-0 191620
44	8	0	-0 933326	7 123929	-0 146879
45	8	0 0	1 245815	7.070361	-0 217778
46	7	0 0	6 827346	-3 092424	0.029369
40	, x	n	7,766593	-2.286888	-0.042163
12	2 2	0	6 9908/13	-4 31/1592	0 155907
40	7	0	-6 92/086	-2 918906	0 072706
	, 2	0	-7 767112	-2 185604	0.606807
51	2 2	0	-7 177527	-4 059877	-0 336067
51	0	0			0.00007

$3+NH_3$

Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-4176285.290	kJ∙mol⁻¹				
Enthalpy (H)	-4175203.602	kJ∙mol⁻¹				
Gibbs free energy (G)	-4175459.362	kJ∙mol⁻¹				
ZPVE	1001.751	kJ∙mol⁻¹				
Correction to U	1079.209	kJ∙mol⁻¹				
Correction to H	1081.687	kJ∙mol⁻¹				
Correction to G	825.928	kJ∙mol⁻¹				
S _{total}	857.846	J∙mol ⁻¹ ∙K ⁻¹				
S _{vib}	515.665	J·mol ⁻¹ ·K ⁻¹				

Combon	At	Atomio	Cartesian Coordinates		
Center	Atomic	Atomic		(Angstroms)	
Number	Number	туре	х	Ŷ	Z
1	6	0	-0.255422	-1.196643	-1.627729
2	6	0	-0.164027	0.372004	-1.914223
3	6	0	1.756948	-0.510402	-1.012505
4	1	0	-0.188303	-1.688208	-2.609199
5	1	0	-0.444812	0.556435	-2.954996
6	7	0	1.273466	0.567947	-1.717557
7	1	0	1,639336	1.528048	-1.593729
. 8	- 7	0	0.962050	-1.524975	-0.881228
9	6	0	-1.024322	1,263790	-1.032469
10	6	0	-2 254575	1 732169	-1 517992
10	6	0	-0 628190	1 623976	0 264854
12	6	0	-3 079522	2 532713	-0 735124
12	1	0	-2 569066	1 //72835	-2 524410
14	1	0	1 429075	2 1212033	1 062400
14	1	0	-1.430073	1 20/562	0.652492
15	1	0	2 65620	2,264,302	0.033483
10	0	0	-2.030039	2.000019	1 104470
17	1	0	-4.027650	2.901021	-1.104476
18	1	0	-1.141/92	2.706056	2.065680
19	6	0	-1.528035	-1.681619	-0.967347
20	6	0	-2.682064	-1.881072	-1.740581
21	6	0	-1.577685	-1.939441	0.408982
22	6	0	-3.86/69/	-2.314498	-1.1586//
23	1	0	-2.650636	-1.701656	-2.811260
24	6	0	-2.753149	-2.379192	1.009581
25	1	0	-0.679856	-1.807552	1.001405
26	6	0	-3.885267	-2.557593	0.215108
27	1	0	-4.763166	-2.472262	-1.745618
28	1	0	-2.803152	-2.585251	2.071047
29	6	0	3.135692	-0.518982	-0.470116
30	6	0	3.507444	-1.533530	0.428014
31	6	0	4.078232	0.450825	-0.845942
32	6	0	4.791217	-1.576781	0.954042
33	1	0	2.774221	-2.282292	0.702159
34	6	0	5.369025	0.418253	-0.327447
35	1	0	3.809662	1.229783	-1.549469
36	6	0	5.705320	-0.595034	0.567718
37	1	0	5.091598	-2.349255	1.649872
38	1	0	6.108819	1.156435	-0.608243
39	1	0	2.737937	3.642843	-0.695882
40	1	0	2.578895	3.771576	-2.309579
41	1	0	1.274805	3.914897	-1.348471
42	7	0	2.136511	3.387806	-1.476669
43	7	0	7.063545	-0.631713	1.119949
44	8	0	7.856354	0.244917	0.769055
45	8	0	7.344073	-1.537012	1.908047
46	7	0	-3 512327	3 716820	1 382717
47	8	0	-4.583455	4,103411	0.909496
/2	2	0	-3 119274	4 003744	2 515976
-0 /Q	7	0	-5 126653	-3 020838	0.837870
50	, 2	0	-6 117/188	-3 171360	0 118317
50	0 9	0	-5 172127	-2 227656	2 0521/1
51	0	0	-2.122122	-3.237030	2.052141

$\mathbf{5hb} + \mathbf{NH}_3$

Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-9627970.211	kJ∙mol⁻¹				
Enthalpy (H)	-9626834.686	kJ∙mol⁻¹				
Gibbs free energy (G)	-9627157.298	kJ∙mol⁻¹				
ZPVE	1026.471	kJ∙mol⁻¹				
Correction to U	1133.046	kJ∙mol⁻¹				
Correction to H	1135.524	kJ∙mol⁻¹				
Correction to G	812.913	kJ∙mol⁻¹				
S _{total}	1082.070	J∙mol ⁻¹ ∙K ⁻¹				
S _{vib}	721.150	J·mol ⁻¹ ·K ⁻¹				

Contor	Atomic	Atomic	Cartesian Coordinates		
Number	Numbor	Atomic		(Angstroms)	
Number	Number	type	х	Y	Z
1	6	0	1.713427	-0.651068	0.587245
2	6	0	-1.886061	-0.428099	1.465956
3	6	0	0.070071	0.858215	1.381333
4	1	0	0.928745	-1.321257	0.221699
5	1	0	-1.986615	-0.141519	2.522108
6	7	0	-0.913436	-0.020917	0.744344
7	7	0	1.453761	0.456379	1.165946
8	6	0	-2.946147	-1.300894	0.926331
9	6	0	-3.946258	-1.774781	1.786116
10	6	0	-2.974283	-1.669515	-0.428180
11	6	0	-4.957750	-2.609510	1.314728
12	1	0	-3.936060	-1.492017	2.834464
13	6	0	-3.976462	-2.499064	-0.915764
14	1	0	-2.203226	-1.294951	-1.091707
15	6	0	-4.955377	-2.959643	-0.032753
16	1	0	-5.724147	-2.972361	1.986910
17	1	0	-3.993881	-2.779120	-1.960878
18	6	0	3.101666	-1.102739	0.368562
19	6	0	3.326769	-2.329369	-0.270454
20	6	0	4.200904	-0.334326	0.783732
21	6	0	4.621914	-2.791396	-0.496436
22	1	0	2.483402	-2.931001	-0.596242
23	6	0	5.499297	-0.779352	0.566810
24	1	0	4.022713	0.614454	1.277032
25	6	0	5.690447	-2.006088	-0.072529
26	1	0	4,785544	-3.739709	-0.991101
27	1	0	6.342318	-0.182416	0.889464
28	6	0	-0.145129	2.273726	0.846765
29	6	0	-0.943275	3.167131	1.568178
30	6	0	0.404971	2.675250	-0.374431
31	6	0	-1.191924	4.450376	1.083388
32	1	0	-1.370403	2.855205	2.517295
33	6	0	0.167755	3.953478	-0.875612
34	1	0	1.031790	1.991552	-0.936309
35	6	0	-0.630901	4.823780	-0.135918
36	1	0	-1.806707	5.137881	1.649724
37	1	0	0.599096	4.257471	-1.820468
38	1	0	-0.076091	0.890663	2.471558
39	1	0	-1.551272	0.457166	5.209063
40	1	0	-0.749272	1.861364	5.092491
41	1	0	-2.371347	1.849999	5.067241
42	7	0	-1.551206	1.352892	4.724752
43	16	0	-0.947452	6.497278	-0.781496
44	9	0	-2.544161	6.407749	-0.450448
45	9	0	-1.228915	5.946178	-2.292614
46	9	0	-1.231728	7.994471	-1.360022
47	9	0	0.621859	6.731603	-1.167558
48	9	0	-0.693429	7.193746	0.673766
49	16	0	7.389940	-2.598319	-0.360463
50	9	0	7.034229	-4.104935	0.157231
51	9	0	7.867174	-2.193074	1.146995
52	9	0	8,908698	-3.126895	-0.616732
53	9	0	7.886480	-1.141279	-0.902621
54	9	Ő	7.054176	-3.053675	-1.891564
55	16	0	-6.269914	-4.052826	-0.665900
56	9	0	-6.123603	-5.081919	0.592711
57	9	0	-5.211580	-4.951811	-1.523627
58	9	0	-7.442848	-5.030184	-1.231415
59	9	0	-6.523258	-3.113823	-1.976383
60	9	0	-7.436597	-3.244450	0.139579

$5cU+NH_4^+$

Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-9627908.524	kJ∙mol⁻¹				
Enthalpy (H)	-9626770.392	kJ∙mol⁻¹				
Gibbs free energy (G)	-9627087.406	kJ∙mol⁻¹				
ZPVE	1028.828	kJ∙mol⁻¹				
Correction to U	1135.654	kJ∙mol⁻¹				
Correction to H	1138.132	kJ∙mol⁻¹				
Correction to G	821.119	kJ∙mol⁻¹				
S _{total}	1063.297	J·mol ⁻¹ ·K ⁻¹				
S _{vib}	702.008	J·mol ⁻¹ ·K ⁻¹				

Center	Atomic	Atomic	Cartesian Coordinates (Angstroms)		
Number	Number	type	х	Ŷ	Z
1	6	0	1.534331	-1.235037	-0.174311
2	6	0	-1.589889	-1.165550	-0.402811
3	6	0	-0.002562	0.625439	-0.149272
4	1	0	0.803877	-2.042923	-0.146031
5	1	0	-0.895716	-1.923797	-0.763594
6	7	0	-1.252905	0.064580	-0.141137
7	7	0	1.226236	0.031481	-0.195514
8	6	0	-2.978331	-1.602184	-0.301804
9	6	0	-3.320148	-2.921768	-0.662150
10	6	0	-4.008202	-0.752700	0.156474
11	6	0	-4.629371	-3.381078	-0.578585
12	1	0	-2.546083	-3.596008	-1.017758
13	6	0	-5.320055	-1.194981	0.244637
14	1	0	-3.759090	0.263235	0.440791
15	6	0	-5.620081	-2.510172	-0.123830
16	1	0	-4.868986	-4.397527	-0.863363
17	1	0	-6.096569	-0.526974	0.595274
18	6	0	2.925002	-1.670412	-0.137760
19	6	0	3.219366	-3.047488	-0.049921
20	6	0	4.007955	-0.766027	-0.196601
21	6	0	4.529236	-3.510100	-0.013634
22	1	0	2.405197	-3.765823	-0.008671
23	6	0	5.321028	-1.211489	-0.162314
24	1	0	3.799425	0.294536	-0.276549
25	6	0	5.571876	-2.584270	-0.068681
26	1	0	4.730368	-4.571460	0.055664
27	1	0	6.136763	-0.501177	-0.210221
28	6	0	0.013628	2.104155	-0.155276
29	6	0	1.22/642	2.830012	-0.144782
30	6	0	-1.184643	2.855870	-0.163989
31	6	0	1.250520	4.217807	-0.133714
32	I C	0	2.101132	2.281793	-0.149046
33	0	0	-1.177442	4.244200	-0.145292
24	1	0	-2.129909	2.529127	-0.190010
25	1	0	2 109/02	4.921554	-0.127500
30	1	0	2.196492	4.741278	0.120307
32	1	0	-2.113904	4.788007	1 8/737/
30	1	0	0.017744	1 010245	2 272925
40	1	0	-0.816922	1.010245	3 269038
40	1	0	0.010322	-0 427032	3 163272
42	7	0	0.016184	0.558425	2,893533
43	16	0	0.063230	6.729200	-0.102099
44	9	0	1.217394	6.788429	1.058158
45	9	0	-1.097952	6.813838	1.049566
46	9	0	0.081068	8.364129	-0.073936
47	9	0	-1.089314	6.851116	-1.256175
48	9	0	1.226709	6.825866	-1.247626
49	16	0	7.285225	-3.173917	-0.022459
50	9	0	6.984515	-4.214024	1.203835
51	9	0	7.738565	-2.032091	1.057277
52	9	0	8.829304	-3.704277	0.020641
53	9	0	7.747607	-2.189540	-1.242519
54	9	0	6.994459	-4.372475	-1.095334
55	16		-7.331340	-3.097916	-0.003145
56	9		-7.280116	-3.814813	-1.470691
57	9		-7.935511	-1.740946	-0.684544
58	9		-8.871942	-3.626417	0.107795
59	9		-7.542740	-2.436163	1.477666
60	9		-6.887610	-4.510620	0.691289

$\boldsymbol{5hb}{+}NH_3$

Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-9628058.448	kJ∙mol⁻¹				
Enthalpy (H)	-9626914.547	kJ∙mol⁻¹				
Gibbs free energy (G)	-9627224.847	kJ∙mol⁻¹				
ZPVE	1037.489	kJ∙mol⁻¹				
Correction to U	1141.420	kJ∙mol⁻¹				
Correction to H	1143.901	kJ∙mol⁻¹				
Correction to G	833.600	kJ∙mol⁻¹				
S _{total}	1040.770	J·mol ⁻¹ ·K ⁻¹				
S _{vib}	683.716	J·mol ⁻¹ ·K ⁻¹				

Center	Atomic	Atomic	Ca	artesian Coordinates	
Number	Number	tuno		(Angstroms)	
Number	Number	type	х	Y	Z
1	6	0	-0.000331	-1.378629	2.036232
2	6	0	-0.075760	0.165446	2.431532
3	6	0	-1.996549	-0.623569	1.449540
4	1	0	-0.089592	-1.938562	2.978459
5	1	0	0.201050	0.274368	3.483914
6	7	0	-1.510306	0.390977	2.242919
7	1	0	-1.862645	1.361538	2.183020
8	7	0	-1.211701	-1.634338	1.249225
9	6	0	0.799059	1.106456	1.616876
10	6	0	2.039056	1.511377	2.126686
11	6	0	0.410040	1.571119	0.353786
12	6	0	2.882228	2.349446	1.399938
13	1	0	2.355310	1.172153	3.108705
14	6	0	1,236431	2,411076	-0.389948
15	1	0	-0.551037	1,284194	-0.058263
16	- 6	0	2 466280	2 788069	0 145090
10	1	0	3 835784	2.653010	1 812247
18	1	0	0 922070	2.055010	-1 365175
19	6	0	1 27/1598	-1 832987	1 358291
20	6	0	2 394400	-2 173273	2 127/198
20	6	0	1 362956	-1 918076	-0.035403
21	6	0	2 5 8 5 1 2 /	-2 577596	1 527867
22	1	0	2 240127	2.377330	2 211712
23	1	0	2.340127	-2.130998	0.656510
24	1	0	0.403030	-1 678130	-0.030310
25	5	0	2 6/1120	2 645451	0.033332
20	1	0	3.041138	-2.043431	2 125654
27	1	0	4.441424	-2.033327	2.133034
20	1	0	2.39/01/	-2.56/2/0	-1.755001
29	0	0	-3.307833	-0.308190	0.050031
50	6	0	-5.740504	-1.495545	-0.095271
27	0	0	-4.304073 E 017916	1 472725	0.642092
32	1	0	-3.017810	-1.4/2/25	-0.043983
24	1	0	-3.013920 E E90E67	-2.228133	0.425554
25	1	0	-3.389307	1 000000	2 104600
20	1	0	-4.040705	1.009000	2.104099
27	1	0	-3.920720 E 202260	-0.317100	-0.189370
27	1	0	-5.295509	-2.10/001	-1.406117
20	1	0	-0.500797	2 550226	1.144952
39	1	0	-2.941000	3.559220	2.062752
40	1	0	-2.747125	3.374404	3.002733
41	1	0	-1.459540	2,724067	2.065760
42	16	0	-2.550255	3.230001	2.190340
45	10	0	3.333630	5.004025	-0.010010
44	9	0	2.524205	4.004519	-1.210510
45	9	0	5.500059	5.040190	-2.19/11/
40	9	0	4.320838	4.000300	-1.082007
47	9	0	4.074050 2.8016EE	2.960627	-0.502008
40	9	0	5.691055	4.019102	0.477062
49	10	0	5.16/0/6	-3.177264	-0.001900
50	9	0	5.590094	-4.422447	0.370078
51	9	0	0.104129	-2.232938	1 276960
52	9	U	0.3/3000	-3.032223	-1.3/080/
53	9	U	2.1133/0	-1.9/9101	-1./69348
54	9	U	4.406489	-4.168/40	-1.698292
55	010		-7.002525	-0.4/8159	-0.904/35
50	9		-7.762010	-2.099490	-0.814140
5/	9		-1.036810	-0.025906	-2.428570
58	9		-9.099490	-0.442015	-1.545131
59	9		-7.582498	1.14/031	-1.055112
UU	9		-0.30/102	-0.325800	0.559/99

7hb+NH₃

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-4360359.851	kJ∙mol⁻¹			
Enthalpy (H)	-4358950.494	kJ∙mol⁻¹			
Gibbs free energy (G)	-4359264.796	kJ∙mol⁻¹			
ZPVE	1307.873	kJ∙mol⁻¹			
Correction to U	1406.878	kJ∙mol⁻¹			
Correction to H	1409.357	kJ∙mol⁻¹			
Correction to G	1095.055	kJ∙mol⁻¹			
S _{total}	1054.196	J·mol ⁻¹ ·K ⁻¹			
Svib	704.176	J·mol ⁻¹ ·K ⁻¹			

Center	Atomic	Atomic	Car	(Angestrome)	5
Number	Number	type	v	(Angstroms)	7
1	6	0	1 700604	0 596470	0.496711
1	6	0	1.709094	-0.360479	1 220525
2	0	0	-1.903004	-0.410/33	1.329323
3	1	0	0.027525	1 268000	0 111220
4 5	1	0	-2 012096	-0.110026	2 282442
5	1	0	-2.012090	-0.119020	2.382443
7	7	0	1 422006	-0.001833	1 057260
, 8	,	0	-2 952283	-1 310146	0.802284
9	6	0	-2.952205	-1.310140	1 666078
10	6	0	-2 966650	-1 717523	-0 5/13080
10	6	0	-1 959511	-2 613975	1 199869
12	1	0	-3 957249	-1 452402	2 706265
13	- 6	0	-3 963523	-2 562398	-1 011825
14	1	0	-2.187974	-1.357129	-1.206108
15	- 6	0	-4 968285	-3 017774	-0 141193
16	1	0	-5.741473	-2.971845	1.860164
17	1	0	-3.972926	-2.873616	-2.049694
18	6	0	3.106139	-1.020970	0.292661
19	6	0	3.357213	-2.257329	-0.321416
20	6	0	4.192140	-0.229446	0.706263
21	6	0	4.661734	-2.701169	-0.520623
22	1	0	2.522399	-2.873509	-0.643922
23	6	0	5.493122	-0.668284	0.508872
24	1	0	3.991697	0.725788	1.178735
25	6	0	5.739255	-1.907388	-0.105598
26	1	0	4.848054	-3.657166	-0.995148
27	1	0	6.337958	-0.065352	0.823045
28	6	0	-0.196262	2.306122	0.684174
29	6	0	-0.900506	3.251856	1.438695
30	6	0	0.260115	2.649681	-0.594469
31	6	0	-1.139446	4.523698	0.925638
32	1	0	-1.258741	2.982620	2.428520
33	6	0	0.022544	3.919377	-1.112119
34	1	0	0.810587	1.921384	-1.181039
35	6	0	-0.679982	4.867382	-0.352696
36	1	0	-1.679511	5.265055	1.504501
37	1	0	0.380216	4.181638	-2.100924
38	1	0	-0.134992	0.949648	2.332476
39	1	0	-1.283814	0.429131	5.136222
40	1	0	-0.787384	1.966993	5.004510
41	1	0	-2.373430	1.629123	5.053486
42	7	0	-1.487442	1.309358	4.666700
43	6	0	7.156934	-2.327743	-0.291800
44	8	0	8.120431	-1.665582	0.053552
45	8	0	7.266140	-3.531244	-0.889163
46	6	0	8.609274	-4.003465	-1.103903
47	1	0	9.134847	-4.107741	-0.152195
48	1	0	8.504454	-4.972224	-1.590132
49	1	0	9.160209	-3.311200	-1.744322
50	0	0	-0.958900	0.241/20	-0.853370
51	0	0	-1.308338	6 454405	-0.228231
52	6	0	-0.400900	7 76/320	-2.089018
54	1	0	-0.031102	8 530425	-2.033003
55	1	0	-0 226046	7 754176	-3 623805
55	1	0	-1.7620040	7.961731	-2.773996
57	÷ 6	0	-6.062029	-3.925665	-0 591295
58	8	0	-6.943150	-4.351476	0.135438
59	8	Ő	-5.974562	-4.230036	-1.900925
60	6	0	-6.999542	-5.103813	-2.410552
61	1	ů 0	-7.986207	-4.655952	-2.274138
62	- 1	0	-6.778757	-5.226771	-3.469756
63	1	0	-6.968859	-6.068206	-1.898722

$7cU+NH_4^+$

Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-4360291.676	kJ·mol⁻¹				
Enthalpy (H)	-4358882.094	kJ∙mol⁻¹				
Gibbs free energy (G)	-4359178.372	kJ∙mol⁻¹				
ZPVE	1310.955	kJ∙mol⁻¹				
Correction to U	1407.104	kJ∙mol⁻¹				
Correction to H	1409.582	kJ∙mol⁻¹				
Correction to G	1113.304	kJ∙mol⁻¹				
S _{total}	993.746	J·mol ⁻¹ ·K ⁻¹				
S _{vib}	643.462	J·mol ⁻¹ ·K ⁻¹				
Contor Atomic	Atomic	Cartesian Coordinates				

	Center	Atomic	Atomic	Car	tesian Coordinates	
	Number	Number	type		(Angstroms)	_
-			-71	X	Ŷ	Z
	1	6	0	1.410957	-1.168461	-0.234089
	2	6	0	-1.693830	-0.894094	-0.461084
	3	6	0	0.001562	0.791888	-0.210077
	4	1	0	0.624582	-1.923418	-0.216169
	5	1	0	-1.051445	-1.66/184	-0.882503
	6	7	0	-1.281550	0.307327	-0.172132
	/	/	0	1.188033	0.11//80	-0.259637
	8	6	0	-3.094103	-1.2/0866	-0.313332
	9	6	0	-3.510410	-2.562928	-0.701170
	10	6	0	-4.066067	-0.393325	0.218917
	11	6	0	-4.833504	-2.963102	-0.5/1959
	12	1	0	-2.778579	-3.253/29	-1.112164
	13	6	0	-5.385969	-0.790895	0.347428
	14	1	0	-3./56858	0.600461	0.523428
	15	6	0	-5./90903	-2.080820	-0.043831
	10	1	0	-5.133007	-3.958025	-0.8/82/0
	17	1	0	-0.151214	-0.114509	0.752978
	10	6	0	2.705272	-1.096961	-0.177080
	19	0	0	2.901132	-3.090210	-0.097222
	20	6	0	5.915215	-0.0/2//0	-0.205542
	21	1	0	2 002675	2 751221	-0.041731
	22	1	0	5 183317	-1 /10003	-0.078703
	23	1	0	3 778530	0 200900	-0.131210
	25	6	0	5 366642	-2 813395	-0.067079
	26	1	0	4.360888	-4.720566	0.020070
	27	1	0	6.061521	-0.783108	-0.173621
	28	6	0	0.109029	2.265928	-0.210587
	29	6	0	1.366146	2.918251	-0.244331
	30	6	0	-1.042173	3.091516	-0.169081
	31	6	0	1.467443	4.300728	-0.228202
	32	1	0	2.261841	2.310959	-0.289025
	33	6	0	-0.938621	4.472885	-0.143624
	34	1	0	-2.017520	2.620550	-0.165996
	35	6	0	0.315886	5.107270	-0.170945
	36	1	0	2.445541	4.768369	-0.259066
	37	1	0	-1.831909	5.088505	-0.110464
	38	1	0	0.056047	0.826220	1.775236
	39	1	0	0.885442	1.195320	3.205116
	40	1	0	-0.781979	1.188713	3.198604
	41	1	0	0.058283	-0.247381	3.082595
	42	7	0	0.054994	0.740204	2.821344
	43	6	0	0.365946	6.581880	-0.144168
	44	8	0	-0.610824	7.316082	-0.089550
	45	8	0	1.632981	7.065865	-0.183014
	46	6	0	1.751716	8.497029	-0.163597
	47	1	0	1.314831	8.910051	0.748937
	48	1	0	2.820817	8.704405	-0.199391
	49	1	0	1.250209	8.938971	-1.027943
	50	6	0	6.748580	-3.339025	-0.011337
	51	8	0	7.757489	-2.649937	-0.036750
	52	8	0	6.792391	-4.689810	0.074538
	53	6	0	8.10/3/8	-5.26/28/	0.130687
	54	1	U	8.031341 7.0F2040	-4.904555	1.006046
	55 E C	1	U	1.30043 0 676000	-0.34339U	0.1302//
	50	L L	0	0.0/0U2U	-3.020452	-U./0894U
	57	0	0	-7.210404 -8 075001	-2.431233	0.120352
	20	ð o	0	-0.0/5091	-1./18901	0.380505
	23	0 6	0	-7.40104/ _8 8/0501	-2.700109	-0.304379
	60	0 1	0	-0.049321	-4.131301	-0.177158
	67	1 1	0	-8 8786/17	-5 150551	-0 260208
	63	1 1	0	-9.164274	-4.108589	0.868798
		-	0	3.2372/7		0.000700

7+NH₃

1 11111					
Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-4360446.305	kJ∙mol⁻¹			
Enthalpy (H)	-4359031.132	kJ∙mol⁻¹			
Gibbs free energy (G)	-4359323.235	kJ∙mol⁻¹			
ZPVE	1318.877	kJ∙mol⁻¹			
Correction to U	1412.695	kJ∙mol⁻¹			
Correction to H	1415.173	kJ∙mol⁻¹			
Correction to G	1123.070	kJ∙mol⁻¹			
S _{total}	979.746	J·mol ⁻¹ ·K ⁻¹			
S _{vib}	633.361	J·mol ⁻¹ ·K ⁻¹			

Center	Atomic	Atomic	Car	tesian Coordinates	
Number	Number	type	v	(Angstroms)	-
1	G	0	0.092601	1 122275	1 022699
1	0	0	-0.063001	-1.133373	-1.952000
2	6	0	1 897627	-0 391807	-1 276074
4	1	0	0.015440	-1.581644	-2.932649
. 5	1	0	-0.344976	0.659903	-3.188384
6	7	0	1.377727	0.688764	-1.956978
7	1	0	1.695808	1.654064	-1.771682
8	7	0	1.141523	-1.439985	-1.185619
9	6	0	-0.944998	1.270471	-1.239729
10	6	0	-2.202593	1.689650	-1.696007
11	6	0	-0.555708	1.618892	0.062294
12	6	0	-3.055381	2.428100	-0.880383
13	1	0	-2.516507	1.436979	-2.705051
14	6	0	-1.400947	2.359458	0.882389
15	1	0	0.417823	1.317302	0.433890
16	6	0	-2.658619	2.770174	0.419822
17	1	0	-4.023442	2.745944	-1.249539
18	1	0	-1.100756	2.628598	1.889270
19	6	0	-1.342361	-1.695939	-1.308109
20	6	0	-2.461986	-1.964326	-2.109159
21	6	0	-1.419741	-1.953930	0.066021
22	6	0	-3.633506	-2.463393	-1.550784
23	1	0	-2.411325	-1.780140	-3.180207
24	0	0	-2.56/429	-2.459461	0.051014
25	1	0	-0.546255	-1.707909	-0 1735/7
20	1	0	-4 500279	-2.713341	-0.173347
27	1	0	-2 634970	-2.659243	1 695848
20	6	0	3 269471	-0 353898	-0 718206
30	6	0	3.671528	-1.353007	0.182965
31	6	0	4.182319	0.649319	-1.078988
32	6	0	4.951659	-1.344990	0.722549
33	1	0	2.963343	-2.129109	0.449015
34	6	0	5.465082	0.657183	-0.540311
35	1	0	3.893787	1.418460	-1.786210
36	6	0	5.859385	-0.335711	0.365083
37	1	0	5.253240	-2.116304	1.421196
38	1	0	6.177314	1.427034	-0.815561
39	1	0	2.861521	3.777037	-0.892077
40	1	0	2.242167	4.078444	-2.366094
41	1	0	1.254733	3.943114	-1.079030
42	7	0	2.087185	3.547445	-1.511476
43	6	0	7.243661	-0.274936	0.914086
44	8	0	8.056409	0.589866	0.634809
45	8	0	7.507497	-1.28/899	1.702837
40	0	0	-3.520884	3.502089	1.338534
47	0 0	0	-5.207554	2 207002	2.472795
40	0 6	0	-4.702905	-3 256604	0.761400
49 50	0	0	-4.979710	-3.230004	-0 202115
51	8	0	-4 925754	-3 463551	1 706654
52	6	0	8.828414	-1.297983	2,335633
53	1	0	8.861212	-2.175619	2,979451
54	1	0	9.584885	-1.369982	1.551205
55	1	0	8.999829	-0.389868	2.917746
56	6	0	-5.592362	4.662264	1.614953
57	1	0	-6.476372	4.848126	1.006643
58	1	0	-5.857464	4.097509	2.511519
59	1	0	-5.125392	5.604517	1.909803
60	6	0	-6.123710	-3.988144	2.306598
61	1	0	-6.378054	-4.957093	1.871289
62	1	0	-5.898196	-4.094037	3.366843
63	1	0	-6.959263	-3.299799	2.160804

$\pmb{8hb}{+}NH_3$

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-22816289.583	kJ∙mol⁻¹			
Enthalpy (H)	-22815321.317	kJ∙mol⁻¹			
Gibbs free energy (G)	-22815584.525	kJ∙mol⁻¹			
ZPVE	891.514	kJ∙mol⁻¹			
Correction to U	965.788	kJ∙mol⁻¹			
Correction to H	968.266	kJ∙mol⁻¹			
Correction to G	705.058	kJ∙mol⁻¹			
S _{total}	882.820	J·mol ⁻¹ ·K ⁻¹			
S _{vib}	530.071	J·mol ⁻¹ ·K ⁻¹			

Center	Atomic	Atomic	Cart	esian Coordinates	
Number	Number	type		(Angstroms)	_
			X	Ŷ	2
1	6	0	1.712837	-0.655270	0.380741
2	6	0	-1.897903	-0.415687	1.203825
3	6	0	0.060908	0.866780	1.139234
4	1	0	0.928468	-1.306607	-0.019485
5	1	0	-2.007494	-0.120675	2.257593
6	7	0	-0.914285	-0.014366	0.492806
7	7	0	1.447745	0.447495	0.968061
8	6	0	-2.957445	-1.287215	0.668353
9	6	0	-3.976807	-1.733198	1.521948
10	6	0	-2.973077	-1.687905	-0.678388
11	6	0	-4.991720	-2.566206	1.052903
12	1	0	-3.977629	-1.427613	2.564615
13	6	0	-3.979043	-2.516873	-1.161080
14	1	0	-2.187531	-1.337440	-1.338919
15	6	0	-4.979243	-2.948671	-0.286334
16	1	0	-5.776640	-2.910503	1.716033
17	1	0	-3.991544	-2.824688	-2.200303
18	6	0	3.096391	-1.130341	0.198850
19	6	0	3.319944	-2.354865	-0.446570
20	6	0	4.200427	-0.390936	0.655387
21	6	0	4 612968	-2 841350	-0.635854
22	1	0	2.474479	-2.935591	-0.805352
23	- 6	0	5 495792	-0.862536	0 474336
23	1	ů 0	4 026260	0.556971	1 15297
25	6	0	5 687107	-2 086925	-0 170616
25	1	0	4 781160	-3 788386	-1 135086
20	1	0	6 247154	0.201444	0.826720
27	1	0	0.347134	-0.291444	0.820730
20	0	0	-0.121498	2.277408	1 21060
29	0	0	-0.849208	3.223097	1.510007
30	6	0	0.391893	2.629135	-0.671191
31	0	0	-1.061749	4.506955	0.803108
32	1	0	-1.252/34	2.953030	2.282924
33	6	0	0.188030	3.905934	-1.193406
34	1	0	0.963535	1.904817	-1.242356
35	6	0	-0.538881	4.831012	-0.4461/1
36	1	0	-1.622599	5.240549	1.3/115
37	1	0	0.588987	4.177321	-2.163302
38	1	0	-0.113364	0.915620	2.225120
39	1	0	-0.882004	0.759927	4.982955
40	1	0	-1.277423	2.329524	4.897052
41	1	0	-2.442939	1.203888	4.978214
42	7	0	-1.539981	1.407556	4.553811
43	35	0	-0.821895	6.591290	-1.156176
44	35	0	7.468364	-2.744339	-0.419469
45	35	0	-6.365625	-4.091566	-0.946156

$8cU+NH_4^+$

Thermodynamic qu	Thermodynamic quantities at 298.15K and 1.00 atm						
Electronic Energy (E)	-22816201.783	kJ∙mol⁻¹					
Enthalpy (H)	-22815233.593	kJ∙mol⁻¹					
Gibbs free energy (G)	-22815478.323	kJ∙mol⁻¹					
ZPVE	894.155	kJ∙mol⁻¹					
Correction to U	965.711	kJ∙mol⁻¹					
Correction to H	968.189	kJ∙mol⁻¹					
Correction to G	723.459	kJ∙mol⁻¹					
S _{total}	820.851	J·mol ⁻¹ ·K ⁻¹					
S _{vib}	467.855	J·mol ⁻¹ ·K ⁻¹					

Contor	Atomic	Atomic	Cartesian Coordinates		
Number	Atomic	Atomic		(Angstroms)	
Number	Number	туре	х	Y	Z
1	6	0	1.534492	-1.165106	-0.167094
2	6	0	-1.594088	-1.101166	-0.375185
3	6	0	-0.006429	0.696925	-0.144451
4	1	0	0.804702	-1.973874	-0.132730
5	1	0	-0.896940	-1.867859	-0.713010
6	7	0	-1.257204	0.134324	-0.137863
7	7	0	1.222828	0.101352	-0.196530
8	6	0	-2.984288	-1.539867	-0.277042
9	6	0	-3.322096	-2.866967	-0.611290
10	6	0	-4.022070	-0.685653	0.153009
11	6	0	-4.633824	-3.327814	-0.529678
12	1	0	-2.542595	-3.547180	-0.945342
13	6	0	-5.335630	-1.131727	0.238150
14	1	0 0	-3 777633	0 337173	0.418556
15	6	0 0	-5 632023	-2 453165	-0 104258
16	1	0 0	-4 876337	-4 351278	-0 793385
10	1	0	-4.070337	-4.331278	0.567237
19	6	0	2 027022	1 602112	0.307237
10	6	0	2.927022	-1.003112	-0.133678
19	0	0	3.22239J	-2.979002	-0.047342
20	6	0	4.012756	-0.702678	-0.195248
21	0	0	4.534781	-3.444423	-0.016614
22	1	0	2.406874	-3.097423	-0.004079
23	6	0	5.327299	-1.152687	-0.166026
24	1	0	3.805776	0.358993	-0.273694
25	6	0	5.579413	-2.523682	-0.075244
26	1	0	4.742161	-4.506740	0.050862
27	1	0	6.151328	-0.449031	-0.216057
28	6	0	0.009567	2.181035	-0.162697
29	6	0	1.221006	2.908329	-0.143793
30	6	0	-1.186247	2.933599	-0.186737
31	6	0	1.242456	4.300122	-0.139776
32	1	0	2.155297	2.360112	-0.135637
33	6	0	-1.178172	4.325948	-0.175836
34	1	0	-2.131571	2.405865	-0.222120
35	6	0	0.039177	5.003779	-0.150438
36	1	0	2.188080	4.831958	-0.128094
37	1	0	-2.112213	4.877636	-0.195615
38	1	0	0.080557	0.659498	1.779277
39	1	0	0.988982	0.921681	3.192122
40	1	0	-0.675099	0.892318	3.284443
41	1	0	0.168443	-0.515968	2.996880
42	7	0	0.141122	0.489673	2.820903
43	35	0	7.394205	-3.148158	-0.035666
44	35	0	-7.443663	-3.075110	0.017761
45	35	0	0.059865	6.926636	-0.138243

8+NH₃

Thermodynamic qu	Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-22816373.427	kJ∙mol⁻¹				
Enthalpy (H)	-22815399.384	kJ∙mol⁻¹				
Gibbs free energy (G)	-22815640.641	kJ∙mol⁻¹				
ZPVE	902.271	kJ∙mol⁻¹				
Correction to U	971.564	kJ∙mol⁻¹				
Correction to H	974.043	kJ∙mol⁻¹				
Correction to G	732.786	kJ∙mol⁻¹				
S _{total}	809.198	J∙mol ⁻¹ ∙K ⁻¹				
S _{vib}	460.378	J·mol ⁻¹ ·K ⁻¹				

Conton	Atomic	Atomic	Cart	esian Coordinates	
Center	Atomic	Atomic		(Angstroms)	
Number	Number	туре	х	Ŷ	z
1	6	0	0.157093	-1.307338	1.760226
2	6	0	0.068496	0.243334	2.119771
3	6	0	-1.851293	-0.585695	1.163544
4	1	0	0.074942	-1.845084	2.716687
5	1	0	0.349626	0.376978	3.168695
6	7	0	-1.371577	0.450074	1.937846
7	1	0	-1.722115	1.415176	1.833020
8	7	0	-1.056216	-1.592948	0.984820
9	6	0	0.927297	1.180522	1.284626
10	6	0	2.153397	1.630955	1.789963
11	6	0	0.539961	1.603258	0.005834
12	6	0	2.981291	2.472179	1.046260
13	1	0	2.470603	1.325088	2,783327
14	6	0	1.352434	2.446330	-0.752988
15	1	0	-0.410380	1.280899	-0.406706
16	6	0	2.568815	2.870439	-0.222617
17	1	0	3.926271	2.815814	1.451090
18	1	0	1.042878	2.766634	-1.741385
19	6	0	1.434594	-1.768275	1.091024
20	6	0	2.558907	-2.083125	1.864581
21	6	0	1.526220	-1.885438	-0.300310
22	6	0	3.753746	-2.492269	1.271972
23	1	0	2.504679	-2.015867	2,948237
24	6	0	2.710429	-2.297907	-0.912169
25	1	0	0.654163	-1.665243	-0.906348
26	6	0	3.814034	-2.593372	-0.115841
27	1	0	4.617692	-2.735636	1.879693
28	1	0	2.771379	-2.389888	-1.990630
29	6	0	-3.223614	-0.550470	0.608735
30	6	0	-3.604474	-1.511328	-0.340758
31	6	0	-4.160813	0.408608	1.018275
32	6	0	-4.886414	-1.511920	-0.881113
33	1	0	-2.880557	-2.257362	-0.648038
34	6	0	-5.450450	0.417240	0.486606
35	1	0	-3.893407	1.151840	1.760932
36	6	0	-5.797721	-0.543133	-0.459834
37	1	0	-5.174649	-2.253213	-1.617402
38	1	0	-6.173299	1.158125	0.808091
39	1	0	-2.923146	3.613093	1.132678
40	1	0	-2.330629	3.772091	2.639446
41	1	0	-1.320584	3.760252	1.363310
42	7	0	-2.159785	3.324710	1.741056
43	35	0	3.691326	4.032365	-1.255709
44	35	0	5.448264	-3.163958	-0.946067
45	35	0	-7.565362	-0.537039	-1.197523

Unsubstituted hydrobenzamide+NH₃

Thermodynamic quantities at 298.15K and 1.00 atm					
Electronic Energy (E)	-2565467.569	kJ∙mol⁻¹			
Enthalpy (H)	-2564430.975	kJ∙mol⁻¹			
Gibbs free energy (G)	-2564650.478	kJ∙mol⁻¹			
ZPVE	971.961	kJ∙mol⁻¹			
Correction to U	1034.116	kJ∙mol⁻¹			
Correction to H	1036.594	kJ∙mol⁻¹			
Correction to G	817.092	kJ∙mol⁻¹			
S _{total}	736.238	J∙mol ⁻¹ ∙K ⁻¹			
S _{vib}	405.626	J·mol ⁻¹ ·K ⁻¹			

C		A	Carl	tesian Coordinates	
Numbe	Atomic	Atomic		(Angstroms)	
Numbe	r Number	туре	х	Y	Z
	1 6	0	1.783370	-0.666713	0.102811
	2 6	0	-1.886939	-0.434154	0.564052
	3 6	0	0.042673	0.892498	0.510810
	4 1	0	1.047792	-1.381288	-0.282929
	5 1	0	-2.087909	-0.024000	1.565124
	6 7	0	-0.854752	-0.087189	-0.105513
	7 7	0	1.446666	0.492414	0.521052
	8 6	0	-2.886630	-1.388723	0.054576
	9 6	0	-3.970719	-1.743530	0.871804
1	10 6	0	-2.782955	-1.954145	-1.228280
1	11 6	0	-4.932462	-2.648048	0.421088
1	12 1	0	-4.056545	-1.306795	1.863560
1	13 6	0	-3,742476	-2.855886	-1.676933
-	14 1	0	-1.945347	-1.670564	-1.856714
-	15 6	0	-4.819569	-3.205899	-0.853611
-	16 1	0	-5 767229	-2 915760	1 061814
1	17 1	0	-3 656609	-3 287909	-2 669646
1	18 6	0	3 183990	-1 128781	0 108068
-	19 6	0	3 477440	-2 420635	-0 353812
-	20 6	0	1 233283	-0 312034	0.553542
-	21 6	0	4.200200	-2 891144	-0 361264
-	22 0	0	2 669806	-3 056442	-0 707908
-	2 6	0	5 542958	-0 781567	0.555965
4	23 0 24 1	0	3 999204	0.781307	0.939903
-	24 I DE 6	0	5.935204	2 072452	0.02677
-	25 0 26 1	0	5.820090	2 202002	0.093077
-	1	0	6 249127	-3.892998	-0.720933
-		0	0.546157	-0.145929	0.909207
-		0	-0.110250	2.221520	-0.226220
4	29 0	0	-0.878190	3.245520	1 495966
		0	0.473057	2.417015	-1.485800
		0	-1.056998	4.452202	-0.344192
		0	-1.335299	3.090420	1.310784
	33 6	0	0.293384	3.621206	-2.166944
3	34 1	0	1.0/3865	1.62/184	-1.926305
3	35 6	0	-0.4/1819	4.642769	-1.59/418
2	36 1	0	-1.651441	5.242840	0.105075
	37 1	0	0.751962	3.764135	-3.141383
3	38 1	0	-0.231747	1.066909	1.563013
3	39 1	0	-1.841190	0.951240	4.344446
2	40 1	0	-0.906898	2.251794	4.090248
4	41 1	0	-2.522005	2.403905	4.098949
4	12 7	0	-1.765822	1.798528	3.784976
4	43 1	0	6.849561	-2.435782	0.088822
2	14 1	0	-0.608924	5.581067	-2.127212
4	45 1	0	-5.567403	-3.909478	-1.207380

Unsubstituted carbanion+NH4⁺

Thermodynamic quantities at 298.15K and 1.00 atm								
Electronic Energy (E)	-2565365.846	kJ∙mol⁻¹						
Enthalpy (H)	-2564330.802	kJ∙mol⁻¹						
Gibbs free energy (G)	-2564537.340	kJ∙mol⁻¹						
ZPVE	973.102	kJ∙mol⁻¹						
Correction to U	1032.565	kJ∙mol⁻¹						
Correction to H	1035.044	kJ∙mol⁻¹						
Correction to G	828.506	kJ∙mol⁻¹						
S _{total}	692.749	J∙mol ⁻¹ ∙K ⁻¹						
S _{vib}	362.464	J·mol ⁻¹ ·K ⁻¹						

	Contor	Atomic	Atomic	Cartesian Coordinates					
Number Number		Atomic	(Angstroms)						
	Number	Number	type	х	Y	Z			
	1	6	0	1.537474	-1.015938	-0.191826			
	2	6	0	-1.590929	-0.960401	-0.376501			
	3	6	0	-0.004301	0.847934	-0.207775			
	4	1	0	0.805907	-1.822577	-0.136178			
	5	1	0	-0.895531	-1.729807	-0.713369			
	6	7	0	-1.254351	0.281351	-0.172968			
	7	7	0	1.224874	0.249306	-0.254919			
	8	6	0	-2.977825	-1.406704	-0.242575			
	9	6	0	-3.313430	-2.739586	-0.557342			
	10	6	0	-4.010581	-0.554588	0.204114			
	11	6	0	-4.623437	-3.200525	-0.439784			
	12	1	0	-2.532572	-3.413758	-0.902495			
	13	6	0	-5.317378	-1.016811	0.319750			
	14	1	0	-3.761376	0.471309	0.454958			
	15	6	0	-5.635490	-2.342732	-0.000310			
	16	1	0	-4 855934	-4 231627	-0.692351			
	17	1	0 0	-6 097447	-0.342006	0.652051			
	18	6	ů 0	2 930505	-1 458230	-0 1///896			
	10	6	0	3 217574	-2 83///30	-0.025354			
	20	6	0	4 020005	-0 564462	-0 223354			
	20	6	0	4.020905	-3 207860	0.223400			
	21	1	0	2 303600	-3.542588	0.019292			
	22	1	0	5 220022	-3.342388	0.031944			
	25	0	0	2 914094	-1.029901	-0.179599			
	24	I C	0	5.014904	0.495640	-0.525657			
	25	0	0	5.598737	-2.399241	-0.056597			
	20	1	0	4.722053	-4.303051	0.112093			
	27	1	0	6.153859	-0.322440	-0.243822			
	28	6	0	0.008675	2.334060	-0.268/22			
	29	6	0	1.218823	3.064219	-0.275546			
	30	6	0	-1.189549	3.082702	-0.305/0/			
	31	6	0	1.227569	4.456746	-0.312373			
	32	1	0	2.152663	2.514535	-0.255965			
	33	6	0	-1.175643	4.475789	-0.334919			
	34	1	0	-2.131764	2.547479	-0.319043			
	35	6	0	0.031521	5.180640	-0.338142			
	36	1	0	2.179766	4.982199	-0.320852			
	37	1	0	-2.119142	5.015943	-0.364358			
	38	1	0	0.082252	0.850090	1.677191			
	39	1	0	0.974485	1.120854	3.104779			
	40	1	0	-0.690259	1.075767	3.179504			
	41	1	0	0.169680	-0.323775	2.898866			
	42	7	0	0.134645	0.681668	2.724894			
	43	1	0	0.040431	6.266382	-0.367020			
	44	1	0	-6.656726	-2.700239	0.093000			
	45	1	0	6.623213	-2.758223	-0.024667			

Unsubstituted amarine+NH₃

Thermodynamic quantities at 298.15K and 1.00 atm								
Electronic Energy (E)	-2565549.101	kJ∙mol⁻¹						
Enthalpy (H)	-2564507.184	kJ∙mol⁻¹						
Gibbs free energy (G)	-2564709.175	kJ∙mol⁻¹						
ZPVE	982.097	kJ∙mol⁻¹						
Correction to U	1039.439	kJ∙mol⁻¹						
Correction to H	1041.918	kJ∙mol⁻¹						
Correction to G	839.927	kJ∙mol⁻¹						
S _{total}	677.498	J∙mol ⁻¹ ∙K ⁻¹						
S _{vib}	350.657	J·mol ⁻¹ ·K ⁻¹						

Center Atom		Atomic	Atomic	Cartesian Coordinates					
		Atomic	Atomic	(Angstroms)					
	Number	Number	туре	х	Y	Z			
	1	6	0	-0.620419	-1.050081	-1.203022			
	2	6	0	-0.440180	0.526607	-1.349733			
	3	6	0	1.463138	-0.548665	-0.632325			
	4	1	0	-0.623268	-1.449710	-2.228715			
	5	1	0	-0.763721	0.823390	-2.352218			
	6	7	0	1.020440	0.614294	-1.231423			
	7	1	0	1.435689	1.527003	-0.989816			
	8	7	0	0.608950	-1.519093	-0.549431			
	9	6	0	-1.182606	1.396466	-0.346543			
	10	6	0	-2.368067	2.036426	-0.730555			
	11	6	0	-0.721121	1.577475	0.965506			
	12	6	0	-3.080536	2.831365	0.169063			
	13	1	0	-2.734721	1.913836	-1.746783			
	14	6	0	-1.429110	2.373583	1.867290			
	15	1	0	0.200923	1.099726	1.281606			
	16	6	0	-2.612256	3.003157	1.472828			
	17	1	0	-3.995530	3,321666	-0.150984			
	18	- 1	0	-1.056116	2.502119	2,879532			
	19	6	0	-1.893118	-1.524021	-0.532036			
	20	6	0	-3 067298	-1 673571	-1 281917			
	20	6	0	-1 928758	-1 818395	0.835983			
	22	6	0	-4.253743	-2.093731	-0.678591			
	23	1	0	-3 050738	-1 466054	-2 349565			
	23	6	0	-3 111850	-2 244359	1 442122			
	25	1	0	-1 015962	-1 725180	1 414784			
	25	6	0	-4 279555	-2 380466	0 688127			
	20	1	0	-5 153946	-2 205443	-1 276488			
	27	1	0	-3 121250	-2 173311	2 504267			
	20	6	0	2 859846	-0 671158	-0 15336/			
	30	6	0	2.033040	-0.071138	0.133304			
	30	6	0	3.207333	0 2/0025	-0 530344			
	31	6	0	1 513/00	-1 880/07	1 1/18536			
	32	1	0	2 / 28071	-1.880492	0 967852			
	33	1 6	0	2.438071 E 159652	-2.431430	0.907832			
	25	1	0	2 600121	1 071575	1 101500			
	35	1	0	5.000131	0.057172	-1.191395			
	30	0	0	4 769652	-0.937173	1 902001			
	37	1	0	4.700000	-2.709559	0.270617			
	30	1	0	3.917223	0.620950	-0.370017			
	39	1	0	2.879242	3.48/3/2	-0.067099			
	40	1	0	2.049822	4.011858	-1.305835			
	41	1	U	1.270806	3./153//	0.032993			
	42	1	U	2.00/30/	3.308443	-0.578213			
	43	1	U	0.513097	-1.00/205	1.132106			
	44	1	U	-3.160915	3.625000	2.1/411/			
	45	1	U	-5.199704	-2./13/89	1.159456			

9

Thermodynamic quantities at 298.15K and 1.00 atm Electronic Energy (E) -5071634.773 kJ·mol⁻¹ Enthalpy (H) Gibbs free energy (G) -5070634.157 kJ∙mol⁻¹ -5070890.269 kJ∙mol⁻¹ kJ·mol⁻¹ kJ·mol⁻¹ ZPVE 921.879 Correction to U 998.137 1000.615 kJ∙mol⁻¹ Correction to H kJ·mol⁻¹ 744.504 Correction to G J·mol⁻¹·K⁻¹ J·mol⁻¹·K⁻¹ 859.025 $\mathbf{S}_{\text{total}}$ S_{vib} 510.189

Contor	Atomic	Atomic	Cartesian Coordinates				
Number	Atomic	Atomic	(Angstroms)		(Angstroms)		
Number	Number	type	х	Y	Z		
1	6	0	-0.380521	0.423475	0.642663		
2	2 6		-0.449421	-0.542520	-0.608654		
3	3 6		1.702183	-0.106105	0.078435		
4	1	0	-0.722637	-0.132589	1.526856		
5	1	0	-0.669640	0.054021	-1.504418		
6	7	0	0.940980	-1.016935	-0.648031		
7	1	0	1.296690	-1.311093	-1.550042		
8	7	0	1.048171	0.722492	0.819338		
9	6	0	-1.477493	-1.646004	-0.493270		
10	6	0	-2.721494	-1.508232	-1.121080		
11	6	0	-1.225693	-2.798319	0.264684		
12	6	0	-3 701129	-2 491188	-0.988550		
13	1	0	-2 926036	-0 627765	-1 723210		
13	6	0	-2 196474	-3 786623	0 396234		
14	1	0	-0.256077	-2 022508	0.330234		
15	6	0	-3 /38368	-3 633170	-0 229544		
10	1	0	-3.438308	-3.033179	-0.229344		
19	1	0	1 000152	4 670004	0.075455		
10	1	0	-1.900100	-4.079904	0.975455		
19	0	0	-1.245973	1.05///4	0.494240		
20	6	0	-2.570936	1.649824	0.949045		
21	6	0	-0.753642	2.808535	-0.134135		
22	6	0	-3.392690	2.760851	0.770970		
23	1	0	-2.964557	0.767995	1.446014		
24	6	0	-1.566408	3.925558	-0.3101/9		
25	1	0	0.275755	2.827137	-0.475775		
26	6	0	-2.890188	3.901065	0.138456		
27	1	0	-4.419082	2.741158	1.120988		
28	1	0	-1.176587	4.811600	-0.799295		
29	6	0	3.179367	-0.153206	0.023873		
30	6	0	3.920823	0.943002	0.490704		
31	6	0	3.854120	-1.273374	-0.481796		
32	6	0	5.309519	0.923275	0.444811		
33	1	0	3.392815	1.805002	0.881632		
34	6	0	5.246132	-1.295761	-0.527990		
35	1	0	3.297652	-2.140422	-0.820869		
36	6	0	5.973945	-0.196630	-0.067963		
37	1	0	5.877760	1.777158	0.796564		
38	1	0	5.762769	-2.163735	-0.921600		
39	6	0	-3.755092	5.120752	-0.003898		
40	6	0	-4.501165	-4.677472	-0.038569		
41	6	0	7.477396	-0.239455	-0.067433		
42	9	0	7.963136	-1.030975	-1.050190		
43	9	0	7.965247	-0.724673	1.100760		
44	9	0	8.018725	0.988543	-0.232964		
45	9	0	-5.193503	-4.489013	1.113242		
46	9	0	-3.979671	-5.924889	0.028332		
47	9	0	-5.409002	-4.674316	-1.040818		
48	- 9	0	-3.399822	5.875068	-1.069647		
49	9	0 0	-5.061923	4.802461	-0.154803		
50	9	0	-3.679054	5.928805	1.083743		

8. Crystallography

Data for Compound **1** were collected on a Bruker X8 prospector diffractometer with an Apex II CCD detector and a Incoatec I μ S 1.0 CuK $_{\alpha}$ Microfocus Source, at a temperature of 150 K on and reduced using CrysAlisPro 171.39.21a.⁵ Data for Compound **2** and **5** were collected on a dual source Rigaku FR-X rotating anode diffractometer using MoK $_{\alpha}$ wavelength, at a temperature of 150K and reduced using CrysAlisPro 171.39.21a.⁵ The structures were solved and refined using Shelx-2016 implemented through Olex2 v1.2.8.^{6,7} Data for Compound **9** were collected on a dual source Rigaku FR-X rotating anode diffractometer using CuK $_{\alpha}$ wavelength, at a temperature of 150K and reduced using CrysAlisPro 171.39.21a.⁵ The structures were solved and refined using Shelx-2016 implemented through Olex2 v1.2.8.^{6,7} Data for Compound **9** were collected on a dual source Rigaku FR-X rotating anode diffractometer using CuK $_{\alpha}$ wavelength, at a temperature of 150K and reduced using CrysAlisPro 171.39.21a.⁵ The structure was solved and refined using Shelx-2016 implemented through Olex2 v1.2.8.^{6,7} All plots were produced using PLATON.⁸

 Table S3 Crystallographic information for Compound 1

Identification code	s4860x
Empirical formula	$C_{24}H_{15}F_9N_2$
Formula weight	502.38
Temperature/K	150
Crystal system	tetragonal
Space group	P4 ₃
a/Å	10.9162(2)
b/Å	10.9162(2)
c/Å	19.1285(4)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2279.42(10)
Z	4
$\rho_{calc}g/cm^3$	1.464
μ/mm^{-1}	1.228
F(000)	1016.0
Crystal size/mm ³	$0.254 \times 0.233 \times 0.132$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.1 to 136.488
Index ranges	$-12 \le h \le 13, -12 \le k \le 13, -23 \le l \le 23$
Reflections collected	26788
Independent reflections	4163 [$R_{int} = 0.0387$, $R_{sigma} = 0.0166$]
Data/restraints/parameters	4163/2/329
Goodness-of-fit on F ²	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0480, wR_2 = 0.1231$
Final R indexes [all data]	$R_1 = 0.0519, wR_2 = 0.1271$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.28
Flack parameter	0.0(2)

Identification code s49351 Empirical formula C₃₀H₄₂N₅ (Main molecule) Formula weight 472.34 Temperature/K 199.99(10) Crystal system monoclinic Space group $P2_1/c$ a/Å 14.1338(3) b/Å 30.1549(9) c/Å 18.5852(5) α/° 90 β/° 91.647(2) $\gamma/^{\circ}$ 90 Volume/Å³ 7917.8(4) Ζ 8 $\rho_{calc}g/cm^3$ 1.503 μ/mm^{-1} 2.401 F(000) 3505.0 Crystal size/mm³ $0.275 \times 0.058 \times 0.05$ Radiation MoK α ($\lambda = 0.71073$) 2Θ range for data collection/° 4.478 to 52.87 Index ranges $-17 \le h \le 17, -35 \le k \le 37, -23 \le l \le 23$ Reflections collected 51690 Independent reflections 16200 [$R_{int} = 0.0492$, $R_{sigma} = 0.0612$] Data/restraints/parameters 16200/20/814 Goodness-of-fit on F² 1.049 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0484, wR_2 = 0.1339$ Final R indexes [all data] $R_1 = 0.0907, wR_2 = 0.1497$ Largest diff. peak/hole / e Å⁻³ 1.67/-0.71

Table S4 Crystallographic information for Compound 2

Table S5 Crystallographic information for Compound 5

Identification code	s48661
Empirical formula	$C_{21}H_{15}F_{15}N_2S_3$
Formula weight	676.53
Temperature/K	150.01(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.2146(2)
b/Å	9.99845(16)
c/Å	20.3665(3)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	91.4162(15)
$\gamma^{/\circ}$	90
Volume/Å ³	2486.54(7)
Z	4
$\rho_{calc}g/cm^3$	1.807
μ/mm^{-1}	0.428
F(000)	1352.0
Crystal size/mm ³	$0.402\times0.375\times0.209$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.538 to 52.744
Index ranges	$\text{-15} \le h \le \text{15}, \text{-12} \le k \le \text{12}, \text{-23} \le l \le \text{25}$
Reflections collected	27722
Independent reflections	5087 [$R_{int} = 0.0241$, $R_{sigma} = 0.0169$]
Data/restraints/parameters	5087/0/430
Goodness-of-fit on F ²	1.054
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0373, wR_2 = 0.0929$
Final R indexes [all data]	$R_1 = 0.0426, wR_2 = 0.0963$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.72

Identification code s49801 Empirical formula $C_{24}H_{15}F_9N_2$ Formula weight 502.38 Temperature/K 150.03(10) Crystal system orthorhombic Space group Pbca a/Å 10.08130(17) b/Å 20.6490(4) c/Å 21.8088(4) α/° 90 β/° 90 $\gamma/^{\circ}$ 90 Volume/Å³ 4539.89(14) Ζ 8 $\rho_{calc}g/cm^3$ 1.470 μ/mm^{-1} 1.233 F(000) 2032.0 Crystal size/mm³ $0.144 \times 0.058 \times 0.022$ Radiation CuKa ($\lambda = 1.54184$) 2Θ range for data collection/° 8.108 to 136.47 Index ranges $-11 \le h \le 12, -23 \le k \le 24, -26 \le l \le 26$ Reflections collected 16281 Independent reflections 4146 [$R_{int} = 0.0282$, $R_{sigma} = 0.0285$] Data/restraints/parameters 4146/418/442 Goodness-of-fit on F² 1.058 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0705, wR_2 = 0.1874$ Final R indexes [all data] $R_1 = 0.0793, wR_2 = 0.1952$ Largest diff. peak/hole / e Å⁻³ 0.56/-0.74

Table S6 Crystallographic information for Compound 9

Fig. S114 ORTEP plot unit of Compound 1 in the crystal (Ellipsoids 50% probability).

Fig. S115 ORTEP plot of one of the main molecule moieties of Compound **2** in the crystal (Ellipsoids 50% probability). Second main molecule moiety, iodide and water omitted for clarity.

Fig. S116 ORTEP plot unit of Compound 5 in the crystal (Ellipsoids 50% probability).

Fig. S117 ORTEP plot of Compound 9 in the crystal (Ellipsoids 50% probability).

9. Membrane separation

	Flux		Reject	tion of 1	Reje	ction of Imp	ourity					
	$(L m^{-2} h^{-1})$			-1)	(%)		(%)				
						GMT	-oNF1					
10 bar				50.21 ± 1	.32	83.52	83.52 ± 0.18 11.03 ±		11.03 ± 1.0	1		
		20 bar		87.49 ± 0	.43	84.57	2 ± 0.16	15.71 ± 0.29		9		
		30 bar		$113.05 \pm$	1.50	84.06	5 ± 0.14		19.12 ± 0.1	6		
						GM7	C-oNF2					
		10 bar		57.95 ± 1.27 107.30 ± 2.49		85.23	85.23 ± 0.30		10.72 ± 1.04	4		
		20 bar				84.49	0 ± 0.32		14.96 ± 0.5	1		
		30 bar		135.93 ± 2	2.17	82.81	± 0.07		18.94 ± 0.1	7		
						NF0	30306					
		10 bar		3.13 ± 0.01	.11	88.71	± 0.17	4	42.98 ± 0.8	1		
		20 bar		7.15 ± 0.0	.16	93.38	3 ± 0.09	:	51.06 ± 0.7	0		
		30 bar		11.68 ± 0	0.30	96.03	3 ± 0.05	:	51.15 ± 0.8	6		
		40 bar		19.22 ± 0	0.12	95.96	5 ± 0.05		37.04 ± 1.6	7		
						Duran	nem 300					
	10 bar 2.53 ± 0.10 20 bar 5.52 ± 0.04		.10	$99.33 \pm 0.01 \qquad \qquad 58.62 \pm 0.53$		3						
			99.80 ± 0.01 68.42 ± 0.23 99.75 ± 0.02 73.78 ± 0.26 68.42 ± 0.23 68.42 ± 0.23		3							
30 bar 7.75 ± 0.16		.16			,	73.78 ± 0.26						
	40 bar			8.37 ± 0.00	.16	99.08	99.08 ± 0.14		76.45±0.46			
	^{3.0} 7			• 00 1	– 00.2	– 00 3		– 00 1		• 00 1	¹⁰⁰)
	1	90.0	99.0	55.1	99.Z	33.5	99.Z	55.1	99.0	55.1	ł	
	2.5 –									T	- 80	
	20					т	-				3-	
h ⁻¹)	2.0		_	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	<i>\//}///</i>						- 60	Rej
Д	1.5 -											ectio
IX (L	-										- 40	on (?
ЪЩ	1.0 -											%)
	-											
	0.5 -										- 20	
	-											
	0.0	0	<u> </u>	48	<u>r////</u> 72	<u>4 1////</u> 96	<u>120 rzycza</u>	<u>× / / / / / / / / / / / / / / / / / / /</u>	168	<u>× / / / / /</u> 192	<u>аг</u> 0	
		-				Time (h)						
				[Flux	k Prod	uct rejectior	ı				

Table S7 Obtained flux and rejection values for GMT-oNF1, GMT-oNF2, NF030306 and Duramem[®] at different pressures.

Fig. S118 Long term stability of Duramem 300 membrane at 20 bar.

Mathematical framework of diafiltration

To draw up the mathematical framework of diafiltration, the concept of rejection should be laid down. By definition, the rejection of a solute is the relative concentration decrease between the two sides of the membrane, usually expressed in percentage as the following:

$$R_{i} = 100\% \cdot \left(\frac{C_{R,i} - C_{P,i}}{C_{R,i}}\right) = 100\% \cdot \left(1 - \frac{C_{P,i}}{C_{R,i}}\right)$$
(5)

Where R_i is the rejection of the solute in percentage, $C_{R,i}$ and $C_{P,i}$ are the concentrations of the solute in the retentate and permeate, respectively, usually given in g L⁻¹.

The schematic system setup used for the process modelling is illustrated in **Fig. S119**. In all cases, it was assumed that the system operates at constant volume. The mixing was assumed to be perfect in each stage. The separation was modelled for a two compound mixture of **1** and its starting material impurity. The initial concentrations in the feed, the rejection values and the flux from the first stage were obtained from experimental data.

Fig. S119 Schematic system setup used for the process modelling. The yellow and green areas show the single stage and the two-stage setups, respectively. F_1 represents the permeate flow rate from the first stage, while F_3 is the permeate flow rate from the second stage. F_2 shows the flow rate of the recycle line from the second stage. V_1 and V_2 are the system volumes for the first and second stage, respectively.

Single stage

Using the above described experimental parameters and assumptions, mass balances for both compounds can be written around the system as the followings:

$$\frac{dC_{\rm R,i}}{dt} = -\frac{C_{\rm R,i} \cdot (1 - \frac{R_{\rm i}}{100\%}) \cdot F_{\rm 1}}{V_{\rm 1}} \tag{6}$$

$$\frac{dC_{\rm R,j}}{dt} = -\frac{C_{\rm R,j} \cdot (1 - \frac{R_j}{100\%}) \cdot F_1}{V_1} \tag{7}$$

Where $C_{R,i}$ and $C_{R,j}$ are the concentrations of **1** and the impurity, respectively, in the retentate in g L⁻¹; R_i and R_j are the rejections of **1** and the impurity, respectively given in percentage; F_1 is the flow rate of the permeate in L h⁻¹ and V_1 is the system volume in L.

Applying the initial concentrations, these differential equations can be easily solved using a Runge-Kutta numerical method in MATLAB². The solution gives the concentrations in the function of time. Normalised concentration values of a solute can be obtained after dividing with the initial concentration. The yield of **1** is its normalised concentration expressed in percentage. The purity of **1** was calculated as the following:

$$P_{\rm i} = \frac{C_{\rm R,i}}{C_{\rm R,i} + C_{\rm R,j}} \cdot 100\%$$
(8)

Where P_i is the purity of **1** in percentage. The obtained normalised concentrations and purity values were plotted against the number of diavolumes. The number of diavolumes is a dimensionless time-like parameter indicating the progress of the filtration and it was calculated as the following:

$$Dv = \frac{F_1 \cdot t}{V_1} \tag{9}$$

Where Dv is the number of diavolumes and t is the filtration time in hours.

Two-stage cascade

Although OSN has been around since the late 20th century, organic solvent nanofiltration cascades have been gaining attention only in recent years. These configurations featuring more than one stage have been proposed to increase the efficiency⁹ and the sustainability¹⁰ of a membrane process or for solvent recovery¹¹. The mathematical description of two-stage cascades has been drawn up in these works.⁹⁻¹¹ An important detail of the description is the introduction of recycle ratio (r_c). This dimensionless parameter is defined as the flow rate ratio of the first stage permeate (F_1) and the recycle line (F_2) as in **Fig. S119**. Using r_c , all flow rates in the system can be given as the function of F_1 .

Similarly to the single stage, mass balances for both compounds can be written around both stages of the system using the above described experimental parameters and assumptions:

$$\frac{dC_{1,i}}{dt} = \frac{C_{2,i} \cdot r_{\rm C} \cdot F_1 - C_{1,i} \cdot (1 - \frac{R_{1,i}}{100\%}) \cdot F_1}{V_1} \tag{10}$$

$$\frac{dC_{1,j}}{dt} = \frac{C_{2,j} \cdot r_{\rm C} \cdot F_1 - C_{1,j} \cdot (1 - \frac{R_{1,j}}{100\%}) \cdot F_1}{V_1} \tag{11}$$

$$\frac{dC_{2,i}}{dt} = \frac{C_{1,i} \cdot (1 - \frac{R_{1,i}}{100\%}) \cdot F_1 - C_{2,i} \cdot \left(1 - \frac{R_{2,i}}{100\%}\right) \cdot (1 - r_{\rm C}) \cdot F_1 - C_{2,i} \cdot r_{\rm C} \cdot F_1}{V_2} \tag{12}$$

$$\frac{dC_{2,j}}{dt} = \frac{C_{1,j} \cdot (1 - \frac{R_{1,j}}{100\%}) \cdot F_1 - C_{2,j} \cdot \left(1 - \frac{R_{2,j}}{100\%}\right) \cdot (1 - r_{\rm C}) \cdot F_1 - C_{2,j} \cdot r_{\rm C} \cdot F_1}{V_2}$$
(13)

Where $C_{1,i}$ and $C_{2,i}$ are the concentrations of **1** in the first stage and second stage, respectively, in g L⁻¹; $C_{1,j}$ and $C_{2,j}$ are the concentrations of the starting material impurity in the first stage and second stage, respectively, in g L⁻¹; $R_{1,i}$ and $R_{2,i}$ are the rejections of **1** on the first and second membrane, respectively, given in percentage; $R_{1,j}$ and $R_{2,j}$ are the rejections of the impurity on the first and second membrane, respectively, given in percentage; r_C is the recycle ratio; F_1 is the flow rate of the first-stage permeate in L h⁻¹ and V_1 and V_2 are the system volumes of the stages in L.

In our case, the modelled two-stage cascade consists of two identical membrane units. Therefore, $R_{1,i}$ equals $R_{2,i}$; $R_{1,j}$ equals $R_{2,j}$; and V_1 equals V_2 . For the simulations, a convenient value of 0.5 was selected for r_c^{10} . Applying the initial concentrations, these differential equations can be easily solved using a Runge-Kutta numerical method in MATLAB². The solution gives the concentrations in the function of time. As V_1 equals V_2 and there is no solute in the second stage at the beginning of the diafiltration, normalised concentrations (*N*) for the whole system can be obtained as the followings:

$$N_{i} = \frac{C_{1,i} \cdot V_{1} + C_{2,i} \cdot V_{2}}{C_{1,i}^{t=0} \cdot V_{1} + C_{2,i}^{t=0} \cdot V_{2}} = \frac{C_{1,i} + C_{2,i}}{C_{1,i}^{t=0}}$$
(14)

$$N_{j} = \frac{C_{1,j} \cdot V_{1} + C_{2,j} \cdot V_{2}}{C_{1,j}^{t=0} \cdot V_{1} + C_{2,j}^{t=0} \cdot V_{2}} = \frac{C_{1,j} + C_{2,j}}{C_{1,j}^{t=0}}$$
(15)

Where $C^{t=0}$ is the initial concentration of a solute in the given stage. The yield of **1** is its normalised concentration expressed in percentage. The purity of **1** was calculated as the following:

$$P_{i} = \frac{C_{1,i} + C_{2,i}}{C_{1,i} + C_{2,i} + C_{1,j} + C_{2,j}} \cdot 100\%$$
(16)

Where P_i is the purity of **1** in percentage. The obtained normalised concentrations and purity values were plotted against the number of diavolumes. The number of diavolumes is a dimensionless time-like parameter indicating the progress of the filtration and it was calculated as the following:

$$Dv = \frac{F_1 \cdot (1 - r_{\rm C}) \cdot t}{V_1 + V_2} \tag{17}$$

Where Dv is the number of diavolumes and t is the filtration time in hours. Comparing this equation with the one drawn up for a single stage, it is apparent that for reaching every diavolume, four times more time and double volume of solvent is required.

References

- 1 H. Tang, Z. Zhang, C. Cong and K. Zhang, Russ. J. Org. Chem., 2009, 45, 559–563.
- 2 MATLAB[®] R2013a (8.1.0.604), The MathWorks, Inc.

3 Gaussian[®] 09, Version 8.0, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

4 E. J. Corey and F. N. M. Kuhnle, Tetrahedron Lett, 1997, 38, 8631–8634.

5 Rigaku Oxford Diffraction, CrysAlisPro Software system, version 1.171.39.21a, 2017, Rigaku Corporation, Oxford, UK.

6 G. M. Sheldrick, Acta Cryst., 2015, A71, 3–8.; G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.

7 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann J. Appl. Cryst., 2009, **42**, 339–341.

8 A. L. Spek, Acta Cryst., 2009, **D65**, 148–155.

9 J. F. Kim, A. M. Freitas da Silva, I. B. Valtcheva and A. G. Livingston Sep. Purif. Technol., 2013, **116**, 277–286.

10 J. F. Kim, G. Szekely, I. B. Valtcheva and A. G. Livingston, Green Chem., 2014, 16, 133–145.

11 M. Schaepertoens, C. Didaskalou, J. F. Kim, A. G. Livingston and G. Szekely J. Membr. Sci. 2016, **514**, 646–658.