Statherin-derived peptide promotes hydroxyapatite crystallization and in situ remineralization of artificial enamel caries

Kun Wang,†a Xiuqing Wang,†a Haoran Li,§a Sainan Zheng,§a Qian Ren,§a Yufei Wang,§a Yumei Niu,§a Wei Li,§a Xuedong Zhou,§a Linglin Zhang*§a

§aState Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

*Corresponding author: Linglin Zhang, Professor, State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China. Postal Address: No.14, Section 3 of Renmin South Road, Chengdu, China. Telephone: 086-028-85503470; E-mail: zhll_sc@163.com.

†Equal contributors.
Figure S1. HPLC data and mass spectrum of DE-11 (A) and DK-6 (B).
Figure S2. Microscopic appearance of non-treated HOK cells (A) and DE-11 treated HOK cells (B).
Figure S3. CLSM images of normal enamel surface (A), FITC-labeled DE-11 treated normal enamel surface (B) and FITC-labeled DE-11 treated demineralized enamel surface (C).
Figure S4. EDS analysis of minerals formed in the control group (A), DE-11 treated group (B) and DK-6 treated group (C) based on TEM analysis. EDS results indicated the Ca/P ratio of 1.41 for control, 1.51 for DK-6, and 1.64 for DE-11, which matched the theoretical Ca/P ratio for HA.