Supporting Information:

Substituent Effects of Bridged Binaphthyl-Type Chiral Dopants on the Helical Twisting Power in Dopant-Induced Chiral Liquid Crystals

Yu Narazaki,a Hiroya Nishikawa,b Hiroki Higuchi,b Yasushi Okumura b and Hirotsugu Kikuchi *,b

a Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
b Institute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan. E-mail: kikuchi@cm.kyushu-u.ac.jp
Helical senses of synthesized chiral dopants

Figure S1 Contact methods: Optical textures of (a) 0.5wt% mixtures of 1a-1f in JC-1041XX and (b) 0.5wt% mixtures of 1a-1f in MBBA. The reference material denotes cholesteryl oleyl carbonate (COC) possessing a left-handed (LH) helical sense.
Figure S2 1H-NMR spectrum of 3.
Figure S3 13C-NMR spectrum of 3.
Figure S4 High resolution mass spectrum of 3.
Figure S5 1H-NMR spectrum of 4f.
Figure S6 13C-NMR spectrum of 4f.
Figure S7 High resolution mass spectrum of 4f.
Figure S8 1H-NMR spectrum of 1a.
Figure S9 13C-NMR spectrum of 1a.
Figure S10 High resolution mass spectrum of 1a.
Figure S11 1H-NMR spectrum of 1b.
Figure S12 13C-NMR spectrum of 1b.
Figure S13 19F-NMR spectrum of 1b.
Figure S14 High resolution mass spectrum of 1b.
Figure S15 1H-NMR spectrum of 1c.
Figure S16 13C-NMR spectrum of 1c.
Figure S17 High resolution mass spectrum of 1c.
Figure S18 1H-NMR spectrum of 1d.
Figure S19 13C-NMR spectrum of 1d.
Figure S20 High resolution mass spectrum of 1d.
Figure S21 1H-NMR spectrum of 1e.
Figure S22 13C-NMR spectrum of 1e.
Figure S23 High resolution mass spectrum of 1e.
Figure S24 1H-NMR spectrum of 1f.
Figure S25 13C-NMR spectrum of 1f.
Figure S26 High resolution mass spectrum of 1f.