Carbonised sieve-like corn straw cellulose-graphene oxide composite for organophosphorus pesticides removal

Fengyue Suoa, Guixian Xieb, Jie Zhangc, Jingyu Lic, Changsheng Lic, Xue Liuc, Yunpeng Zhangc, Yongqiang Mac, MingShan Jia

a College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China

b College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China

c College of Science, China Agricultural University, Beijing 100193, China

*Corresponding authors: MingShan Ji

Tel.: +86-024-88487148

Fax: +86-024-88487148

E-mail: mingshanji@163.com

School of Shenyang Agricultural University

120 Dongling Road, Shenyang 110866, People’s Republic of China
Fig. S1 the SEM images of cellulose (a)(b); the SEM image of CCE/G (c); the SEM image of GO (d); the SEM image of CCE (e); the TEM image of ACCE/G (f)

Fig. S2 X-ray diffraction patterns for CCE, CCE/G, ACCE and ACCE/G (a); Raman spectras of CCE/G, ACCE and ACCE/G (b)
Fig.S3 Effects of different condition of synthesis on the adsorption efficiency: Heat-activated and have GO or not (a); The component of KOH(b); Heat-activated temperature(c); Heat-activated time(d).
Fig. S4 Effect of the ACCE/G dose on the adsorption (a); Effect of the vortex time on the adsorption (b); Effect of pH on the adsorption (c)

Fig. S5 Kinetic studies of chlopyrifos on to ACCE/G: Pseudo-first-order kinetics model (a); Pseudo-second-order kinetic model (b); Adsorption isotherms of chlopyrifos on ACCE/G (c)