Supporting Information

Cellulose acetate/Amygdalus pedunculata shell-derived activated carbon composite monolith for phenol adsorption

Qiancheng Xionga,b, Qiuhong Baia, Cong Lia, Yuanyuan Heb, Yehua Shen†a, Hiroshi Uyama†a,c

a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, Shaanxi Province, China

b College of Pharmaceutical Engineering, Shaanxi Fashion Engineering University, Xi’an 712046, Shaanxi Province, China

c Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

Corresponding author: Tel: +86-29-88302635; E-mail: yhshen@nwu.edu.cn

Corresponding author. Tel.: +81-6-6879-7364; Fax: +81-6-6879-7367;

E-mail: uyama@chem.eng.osaka-u.ac.jp

Content:

\textbf{Fig. S1.} Fabrication procedure of the CA/AC composite monolith

\textbf{Fig. S2.} SEM images of AC power (a), CA monolith(b)
Fig. S3. Effect of different AC power (m CA : AC) adsorption onto CA/AC composite monolith (C_0: 0.8 mg/mL, pH:7, adsorbent dosage: 0.02 g, temperature: 25 °C)

Table S1. Surface properties of CA monolith and CA/AC monolith
Fig. S1. Fabrication procedure of the CA/AC composite monolith
Fig. S2. SEM images of AC power (a), CA monolith(b)
Fig. S3. Effect of different AC power (CA : AC) adsorption onto CA/AC composite monolith (C₀: 0.8 mg/mL, pH:7, adsorbent dosage: 0.02 g, temperature: 25 °C)
Table S1. Surface properties of CA monolith and CA/AC monolith

<table>
<thead>
<tr>
<th>Samples</th>
<th>Surface Area (m²/g⁻¹)</th>
<th>Pore Volume (cm³/g)</th>
<th>Pore Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA monolith</td>
<td>19</td>
<td>0.04</td>
<td>9.1</td>
</tr>
<tr>
<td>CA/AC monolith</td>
<td>262</td>
<td>0.26</td>
<td>4.0</td>
</tr>
</tbody>
</table>