Supporting Information

Synthesis, single crystal structure of fully-substituted polynitrobenzene derivatives for high-energy materials

Wei Yang, a Huanchang Lu, a Longyu Liao, a Guijuan Fan, a* Qing Ma, a* Jinglun Huang a*

a Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianshan Road 64, Mianyang, China
b Department of chemistry and chemical biology, Harvard University, Cambridge, Massachusetts, 02138, USA

*e-mail: fanguijuan@caep.cn, maq@caep.cn & huangjinglun@caep.cn

Contents

1. Spectra Data S2
2. Crystal structure and crystalline parameters S8
3. DSC plot for the title compounds S54
4. Computational details S57
Spectral data of 4
Spectral data of 5
Spectral data of 6
Spectral data of 7
Spectral data of 8
Spectral data of 9
Crystal structures and crystalline parameters

Fig. S1 (a) Thermal ellipsoid plot (50%) and labelling scheme of 6. (b) Ball-and-stick packing diagram of 6 viewed down the a axis. Dashed lines indicate strong hydrogen bonding.
Fig. S2 (a) Thermal ellipsoid plot (50%) and labelling scheme of 7. (b) Ball-and-stick packing diagram of 7 viewed down the b axis. Dashed lines indicate strong hydrogen bonding.
Fig. S3 Figure showing the nitro-π interactions (dashed red lines between nitro oxygen atoms and ring centroids) for each molecule of 7
Fig. S4 (a) Thermal ellipsoid plot (50%) and labelling scheme of 8. (b) Ball-and-stick packing diagram of 8 viewed down the a axis. Dashed lines indicate strong hydrogen bonding.
Table S1. Crystal data and structure refinement details for 4, 5, 6, 7 and 8

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₈H₂Cl₃N₉O₄</td>
<td>C₂₀H₈Cl₄N₁₆O₈</td>
<td>C₁₆H₁₆N₁₆O₈</td>
<td>C₁₀H₈N₉O₄</td>
<td>C₁₀H₈N₉O₄</td>
</tr>
<tr>
<td>Molecular weight [g mol⁻¹]</td>
<td>338.50</td>
<td>742.22</td>
<td>560.45</td>
<td>358.24</td>
<td>332.26</td>
</tr>
<tr>
<td>T [K]</td>
<td>273(2)</td>
<td>293(2)</td>
<td>293(2)</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Crystal size [mm³]</td>
<td>0.21×0.16×0.13</td>
<td>0.22×0.17×0.13</td>
<td>0.20×0.17×0.11</td>
<td>0.18×0.16×0.13</td>
<td>0.17×0.13×0.07</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>P2₁/c</td>
<td>P-1</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
</tr>
<tr>
<td>a [Å]</td>
<td>8.8432(19)</td>
<td>16.424(3)</td>
<td>7.4815(11)</td>
<td>11.5557(18)</td>
<td>8.941(3)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>17.400(4)</td>
<td>10.270(2)</td>
<td>9.2466(13)</td>
<td>11.6416(19)</td>
<td>7.445(3)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>16.430(4)</td>
<td>17.559(3)</td>
<td>16.151(3)</td>
<td>11.1129(17)</td>
<td>20.759(7)</td>
</tr>
<tr>
<td>α [°]</td>
<td>90</td>
<td>90</td>
<td>87.286(4)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β [°]</td>
<td>91.832(4)</td>
<td>92.886(4)</td>
<td>89.891(3)</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>γ [°]</td>
<td>90</td>
<td>90</td>
<td>89.891(3)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>2526.9(9)</td>
<td>2958.0(10)</td>
<td>1115.2(3)</td>
<td>1341.1(4)</td>
<td>1326.1(8)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>λ [Å]</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>μ [Å⁻¹]</td>
<td>0.780</td>
<td>0.780</td>
<td>0.780</td>
<td>0.780</td>
<td>0.780</td>
</tr>
<tr>
<td>μ [mm⁻¹]</td>
<td>0.746</td>
<td>0.746</td>
<td>0.746</td>
<td>0.746</td>
<td>0.746</td>
</tr>
<tr>
<td>F(000)</td>
<td>1344</td>
<td>1488</td>
<td>576</td>
<td>720</td>
<td>680</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>14977 / 4970</td>
<td>15478 / 5161</td>
<td>6451 / 4134</td>
<td>7543 / 2497</td>
<td>7331 / 2456</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-10≤h≤9</td>
<td>-21≤k≤21</td>
<td>-20≤l≤19</td>
<td>-19≤h≤19</td>
<td>-11≤k≤12</td>
</tr>
<tr>
<td>R(int)</td>
<td>0.0357</td>
<td>0.0433</td>
<td>0.0212</td>
<td>0.0334</td>
<td>0.0749</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4970 / 0 / 361</td>
<td>15167 / 5161</td>
<td>6451 / 4134</td>
<td>7543 / 2497</td>
<td>7331 / 2456</td>
</tr>
<tr>
<td>Final R index [I > 2σ(I)]</td>
<td>R1=0.0413, R1=0.0788,</td>
<td>R1=0.0486, R1=0.0468,</td>
<td>R1=0.0498, R1=0.0468,</td>
<td>R1=0.0522, R1=0.1137</td>
<td></td>
</tr>
<tr>
<td>Final R index [all data]</td>
<td>R1=0.0582, R1=0.0965,</td>
<td>R1=0.0647, R1=0.0620,</td>
<td>R1=0.0647, R1=0.0620,</td>
<td>R1=0.1012, R1=0.1328</td>
<td></td>
</tr>
<tr>
<td>GOF on F²</td>
<td>1.020</td>
<td>1.188</td>
<td>1.034</td>
<td>1.039</td>
<td>0.974</td>
</tr>
<tr>
<td>CCDC number</td>
<td>1552452</td>
<td>1552455</td>
<td>1552453</td>
<td>1552454</td>
<td>1552456</td>
</tr>
</tbody>
</table>

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 4. U(eq) is defined as one third of the trace of the orthogonalized U̅ tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>10196(1)</td>
<td>3609(1)</td>
<td>-250(1)</td>
<td>67(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>4189(1)</td>
<td>3562(1)</td>
<td>-821(1)</td>
<td>60(1)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>6435(1)</td>
<td>4385(1)</td>
<td>2116(1)</td>
<td>62(1)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>7644(1)</td>
<td>637(1)</td>
<td>-1834(1)</td>
<td>67(1)</td>
</tr>
<tr>
<td>Cl(5)</td>
<td>4029(1)</td>
<td>1439(1)</td>
<td>571(1)</td>
<td>68(1)</td>
</tr>
<tr>
<td>Cl(6)</td>
<td>10048(1)</td>
<td>1495(1)</td>
<td>1070(1)</td>
<td>64(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>7397(2)</td>
<td>3377(1)</td>
<td>-1263(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>7305(3)</td>
<td>2637(1)</td>
<td>-1491(1)</td>
<td>69(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>7592(3)</td>
<td>3402(1)</td>
<td>-2571(1)</td>
<td>63(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>3973(2)</td>
<td>4043(1)</td>
<td>905(1)</td>
<td>53(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>9470(2)</td>
<td>4125(2)</td>
<td>1427(1)</td>
<td>57(1)</td>
</tr>
</tbody>
</table>
Table S3. Bond lengths [Å] and angles [°] for 4.

<table>
<thead>
<tr>
<th></th>
<th>Bond Lengths [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)-C(1)</td>
<td>1.703(2)</td>
<td></td>
</tr>
<tr>
<td>Cl(2)-C(3)</td>
<td>1.708(2)</td>
<td></td>
</tr>
<tr>
<td>Cl(3)-C(5)</td>
<td>1.710(2)</td>
<td></td>
</tr>
<tr>
<td>Cl(4)-C(9)</td>
<td>1.707(2)</td>
<td></td>
</tr>
<tr>
<td>Cl(5)-C(11)</td>
<td>1.706(2)</td>
<td></td>
</tr>
<tr>
<td>Cl(6)-C(13)</td>
<td>1.714(2)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(7)</td>
<td>1.323(3)</td>
<td></td>
</tr>
</tbody>
</table>

S 13 / S60
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-N(2)</td>
<td>1.343(3)</td>
</tr>
<tr>
<td>N(1)-C(2)</td>
<td>1.419(3)</td>
</tr>
<tr>
<td>N(2)-C(8)</td>
<td>1.305(3)</td>
</tr>
<tr>
<td>N(3)-C(7)</td>
<td>1.291(3)</td>
</tr>
<tr>
<td>N(3)-C(8)</td>
<td>1.334(4)</td>
</tr>
<tr>
<td>N(4)-O(1)</td>
<td>1.191(3)</td>
</tr>
<tr>
<td>N(4)-O(2)</td>
<td>1.191(3)</td>
</tr>
<tr>
<td>N(4)-C(4)</td>
<td>1.474(3)</td>
</tr>
<tr>
<td>N(5)-O(4)</td>
<td>1.187(3)</td>
</tr>
<tr>
<td>N(5)-O(3)</td>
<td>1.201(3)</td>
</tr>
<tr>
<td>N(5)-C(6)</td>
<td>1.480(3)</td>
</tr>
<tr>
<td>N(6)-C(15)</td>
<td>1.328(3)</td>
</tr>
<tr>
<td>N(6)-N(7)</td>
<td>1.346(3)</td>
</tr>
<tr>
<td>N(6)-C(12)</td>
<td>1.417(3)</td>
</tr>
<tr>
<td>N(7)-C(16)</td>
<td>1.309(3)</td>
</tr>
<tr>
<td>N(7)-O(1)</td>
<td>3.739(4)</td>
</tr>
<tr>
<td>N(8)-C(15)</td>
<td>1.296(3)</td>
</tr>
<tr>
<td>N(8)-C(16)</td>
<td>1.323(3)</td>
</tr>
<tr>
<td>N(9)-O(5)</td>
<td>1.194(3)</td>
</tr>
<tr>
<td>N(9)-O(6)</td>
<td>1.199(3)</td>
</tr>
<tr>
<td>N(9)-C(10)</td>
<td>1.477(3)</td>
</tr>
<tr>
<td>N(10)-O(7)</td>
<td>1.187(3)</td>
</tr>
<tr>
<td>N(10)-O(8)</td>
<td>1.197(3)</td>
</tr>
<tr>
<td>N(10)-C(14)</td>
<td>1.474(3)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.380(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.383(3)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.390(3)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.379(3)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>2.038(4)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.373(3)</td>
</tr>
<tr>
<td>C(9)-C(14)</td>
<td>1.375(3)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.375(3)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.391(3)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.381(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.381(3)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>2.039(4)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(7)-N(1)-N(2)</td>
<td>109.2(2)</td>
</tr>
<tr>
<td>C(7)-N(1)-C(2)</td>
<td>129.4(2)</td>
</tr>
<tr>
<td>N(2)-N(1)-C(2)</td>
<td>121.10(18)</td>
</tr>
<tr>
<td>C(8)-N(2)-N(1)</td>
<td>101.5(2)</td>
</tr>
<tr>
<td>C(7)-N(3)-C(8)</td>
<td>101.8(2)</td>
</tr>
<tr>
<td>O(1)-N(4)-O(2)</td>
<td>125.3(2)</td>
</tr>
<tr>
<td>O(1)-N(4)-C(4)</td>
<td>117.1(2)</td>
</tr>
<tr>
<td>O(2)-N(4)-C(4)</td>
<td>117.5(2)</td>
</tr>
<tr>
<td>O(4)-N(5)-O(3)</td>
<td>126.2(2)</td>
</tr>
<tr>
<td>O(4)-N(5)-C(6)</td>
<td>117.2(2)</td>
</tr>
<tr>
<td>O(3)-N(5)-C(6)</td>
<td>116.6(2)</td>
</tr>
<tr>
<td>C(15)-N(6)-N(7)</td>
<td>109.1(2)</td>
</tr>
<tr>
<td>C(15)-N(6)-C(12)</td>
<td>129.3(2)</td>
</tr>
<tr>
<td>N(7)-N(6)-C(12)</td>
<td>121.46(18)</td>
</tr>
<tr>
<td>C(16)-N(7)-N(6)</td>
<td>101.4(2)</td>
</tr>
<tr>
<td>C(16)-N(7)-O(1)</td>
<td>103.04(19)</td>
</tr>
<tr>
<td>N(6)-N(7)-O(1)</td>
<td>114.26(16)</td>
</tr>
<tr>
<td>C(15)-N(8)-C(16)</td>
<td>102.3(2)</td>
</tr>
<tr>
<td>O(5)-N(9)-O(6)</td>
<td>125.6(2)</td>
</tr>
<tr>
<td>O(5)-N(9)-C(10)</td>
<td>117.0(2)</td>
</tr>
<tr>
<td>O(6)-N(9)-C(10)</td>
<td>117.4(2)</td>
</tr>
<tr>
<td>O(7)-N(10)-O(8)</td>
<td>125.2(2)</td>
</tr>
<tr>
<td>O(7)-N(10)-C(14)</td>
<td>118.1(2)</td>
</tr>
<tr>
<td>O(8)-N(10)-C(14)</td>
<td>116.7(2)</td>
</tr>
<tr>
<td>N(4)-O(1)-N(7)</td>
<td>97.31(16)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)</td>
<td>119.35(19)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(1)</td>
<td>120.66(17)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(1)</td>
<td>119.99(17)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>120.0(2)</td>
</tr>
<tr>
<td>C(1)-C(2)-N(1)</td>
<td>120.54(19)</td>
</tr>
<tr>
<td>C(3)-C(2)-N(1)</td>
<td>119.39(19)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>119.0(2)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>120.24(17)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C(2)-C(3)-Cl(2)</td>
<td>120.76(17)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>121.98(19)</td>
</tr>
<tr>
<td>C(3)-C(4)-N(4)</td>
<td>119.40(19)</td>
</tr>
<tr>
<td>C(5)-C(4)-N(4)</td>
<td>118.6(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>117.9(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-Cl(3)</td>
<td>121.41(17)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(3)</td>
<td>120.64(17)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(1)</td>
<td>121.7(2)</td>
</tr>
<tr>
<td>C(5)-C(6)-N(5)</td>
<td>118.6(2)</td>
</tr>
<tr>
<td>C(1)-C(6)-N(5)</td>
<td>119.68(19)</td>
</tr>
<tr>
<td>N(3)-C(7)-N(1)</td>
<td>111.5(2)</td>
</tr>
<tr>
<td>N(3)-C(7)-C(8)</td>
<td>39.85(15)</td>
</tr>
<tr>
<td>N(1)-C(7)-C(8)</td>
<td>71.62(16)</td>
</tr>
<tr>
<td>N(3)-C(7)-H(7)</td>
<td>124.3</td>
</tr>
<tr>
<td>N(1)-C(7)-H(7)</td>
<td>124.3</td>
</tr>
<tr>
<td>C(8)-C(7)-H(7)</td>
<td>164.1</td>
</tr>
<tr>
<td>N(2)-C(8)-N(3)</td>
<td>116.0(2)</td>
</tr>
<tr>
<td>N(2)-C(8)-C(7)</td>
<td>77.71(17)</td>
</tr>
<tr>
<td>N(3)-C(8)-C(7)</td>
<td>38.33(14)</td>
</tr>
<tr>
<td>N(2)-C(8)-H(8)</td>
<td>122.0</td>
</tr>
<tr>
<td>N(3)-C(8)-H(8)</td>
<td>122.0</td>
</tr>
<tr>
<td>C(7)-C(8)-H(8)</td>
<td>160.3</td>
</tr>
<tr>
<td>C(10)-C(9)-C(14)</td>
<td>118.3(2)</td>
</tr>
<tr>
<td>C(10)-C(9)-Cl(4)</td>
<td>120.49(17)</td>
</tr>
<tr>
<td>C(14)-C(9)-Cl(4)</td>
<td>121.18(17)</td>
</tr>
<tr>
<td>C(9)-C(10)-C(11)</td>
<td>121.8(2)</td>
</tr>
<tr>
<td>C(9)-C(10)-N(9)</td>
<td>118.7(2)</td>
</tr>
<tr>
<td>C(11)-C(10)-N(9)</td>
<td>119.47(19)</td>
</tr>
<tr>
<td>C(10)-C(11)-C(12)</td>
<td>119.23(19)</td>
</tr>
<tr>
<td>C(10)-C(11)-Cl(5)</td>
<td>120.65(17)</td>
</tr>
<tr>
<td>C(12)-C(11)-Cl(5)</td>
<td>120.09(17)</td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>119.6(2)</td>
</tr>
<tr>
<td>C(13)-C(12)-N(6)</td>
<td>120.33(19)</td>
</tr>
<tr>
<td>C(11)-C(12)-N(6)</td>
<td>120.04(19)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(12)</td>
<td>119.6(2)</td>
</tr>
<tr>
<td>C(14)-C(13)-Cl(6)</td>
<td>120.68(17)</td>
</tr>
<tr>
<td>C(12)-C(13)-Cl(6)</td>
<td>119.71(17)</td>
</tr>
<tr>
<td>C(9)-C(14)-C(13)</td>
<td>121.4(2)</td>
</tr>
</tbody>
</table>
C(9)-C(14)-N(10) 119.1(2)
C(13)-C(14)-N(10) 119.5(2)
N(8)-C(15)-N(6) 111.0(2)
N(8)-C(15)-C(16) 39.34(15)
N(6)-C(15)-C(16) 71.69(16)
N(8)-C(15)-H(15) 124.5
N(6)-C(15)-H(15) 124.5
C(16)-C(15)-H(15) 163.8
N(7)-C(16)-N(8) 116.2(2)
N(7)-C(16)-C(15) 77.83(17)
N(8)-C(16)-C(15) 38.38(13)
N(7)-C(16)-H(16) 121.9
N(8)-C(16)-H(16) 121.9
C(15)-C(16)-H(16) 160.3

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (Å² x 10³) for 4. The anisotropic displacement factor exponent takes the form: \(-2p^2 [h^2 a^* u^{11} + \ldots + 2h k a^* b^* u^{12}] \).

<table>
<thead>
<tr>
<th></th>
<th>(u^{11})</th>
<th>(u^{22})</th>
<th>(u^{33})</th>
<th>(u^{23})</th>
<th>(u^{13})</th>
<th>(u^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>38(1)</td>
<td>110(1)</td>
<td>54(1)</td>
<td>-10(1)</td>
<td>9(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>43(1)</td>
<td>91(1)</td>
<td>44(1)</td>
<td>-6(1)</td>
<td>-9(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>67(1)</td>
<td>83(1)</td>
<td>35(1)</td>
<td>-14(1)</td>
<td>8(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>71(1)</td>
<td>94(1)</td>
<td>35(1)</td>
<td>-16(1)</td>
<td>6(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>Cl(5)</td>
<td>39(1)</td>
<td>112(1)</td>
<td>52(1)</td>
<td>-12(1)</td>
<td>8(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>Cl(6)</td>
<td>42(1)</td>
<td>97(1)</td>
<td>50(1)</td>
<td>-9(1)</td>
<td>-10(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>49(1)</td>
<td>46(1)</td>
<td>30(1)</td>
<td>-2(1)</td>
<td>3(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>116(2)</td>
<td>49(1)</td>
<td>44(1)</td>
<td>-8(1)</td>
<td>4(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>74(2)</td>
<td>82(2)</td>
<td>32(1)</td>
<td>-4(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>40(1)</td>
<td>72(2)</td>
<td>47(1)</td>
<td>0(1)</td>
<td>7(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>46(1)</td>
<td>83(2)</td>
<td>42(1)</td>
<td>-6(1)</td>
<td>-2(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>48(1)</td>
<td>44(1)</td>
<td>30(1)</td>
<td>-3(1)</td>
<td>1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>104(2)</td>
<td>49(1)</td>
<td>44(1)</td>
<td>-5(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>73(2)</td>
<td>73(2)</td>
<td>32(1)</td>
<td>-4(1)</td>
<td>0(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>45(1)</td>
<td>76(2)</td>
<td>38(1)</td>
<td>-4(1)</td>
<td>-3(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>N(10)</td>
<td>44(1)</td>
<td>87(2)</td>
<td>48(1)</td>
<td>6(1)</td>
<td>9(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>60(1)</td>
<td>115(2)</td>
<td>114(2)</td>
<td>44(2)</td>
<td>32(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>67(1)</td>
<td>76(2)</td>
<td>165(3)</td>
<td>-6(2)</td>
<td>32(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>64(1)</td>
<td>121(2)</td>
<td>75(2)</td>
<td>19(1)</td>
<td>-26(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>U(eq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(7)</td>
<td>76524344</td>
<td>-190474</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8)</td>
<td>74242262</td>
<td>-261384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(15)</td>
<td>6716694</td>
<td>220471</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16)</td>
<td>67842781</td>
<td>290278</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for 4.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(7)-N(1)-N(2)-C(8)</td>
<td>0.3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)-N(1)-N(2)-C(8)</td>
<td>174.7(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-N(6)-N(7)-C(16)</td>
<td>0.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-N(6)-N(7)-O(1)</td>
<td>-175.2(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-N(6)-N(7)-O(1)</td>
<td>-109.48(19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(12)-N(6)-N(7)-O(1)</td>
<td>74.8(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)-N(4)-O(1)-N(7)</td>
<td>-157.5(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S6. Torsion angles [°] for 4.
C(4)-N(4)-O(1)-N(7) 24.8(2)
C(6)-C(1)-C(2)-C(3) -0.7(3)
C(1)-C(1)-C(2)-C(3) 179.73(17)
C(6)-C(1)-C(2)-N(1) 177.2(2)
C(1)-C(1)-C(2)-N(1) -2.3(3)
Cl(1)-C(1)-C(2)-C(3) 179.73(17)
Cl(1)-C(1)-C(2)-N(1) -2.3(3)
C(7)-N(1)-C(2)-C(3) -177.7(2)
C(7)-N(1)-C(2)-C(1) 87.8(3)
N(2)-N(1)-C(2)-C(3) 99.1(3)
C(7)-N(1)-C(2)-C(1) 90.1(3)
N(2)-N(1)-C(2)-C(3) -83.0(3)
C(1)-C(1)-C(2)-C(3) 0.2(3)
N(1)-C(2)-C(3)-N(4) -177.7(2)
C(1)-C(2)-C(3)-Cl(2) 177.97(17)
N(1)-C(2)-C(3)-Cl(2) 0.0(3)
C(2)-C(3)-C(4)-C(5) 0.6(3)
Cl(2)-C(3)-C(4)-C(5) -177.12(17)
C(2)-C(3)-C(4)-N(4) -179.1(2)
C(1)-C(2)-C(3)-C(4) 3.1(3)
O(1)-N(4)-C(4)-C(3) 86.1(3)
O(2)-N(4)-C(4)-C(3) -91.9(3)
O(1)-N(4)-C(4)-C(5) -93.7(3)
O(2)-N(4)-C(4)-C(5) 88.4(3)
C(3)-C(4)-C(5)-C(6) -1.0(3)
N(4)-C(4)-C(5)-C(6) 178.8(2)
C(3)-C(4)-C(5)-Cl(3) -179.28(18)
N(4)-C(4)-C(5)-Cl(3) 0.5(3)
C(4)-C(5)-C(6)-C(1) 0.5(3)
Cl(3)-C(5)-C(6)-C(1) 178.78(18)
C(4)-C(5)-C(6)-N(5) -178.4(2)
C(3)-C(5)-C(6)-N(5) -0.1(3)
C(2)-C(1)-C(6)-C(5) 0.3(3)
Cl(1)-C(1)-C(6)-C(5) 179.89(18)
C(2)-C(1)-C(6)-N(5) 179.2(2)
Cl(1)-C(1)-C(6)-N(5) -1.3(3)
O(4)-N(5)-C(6)-C(5) 101.7(3)
O(4)-N(5)-C(6)-C(1) 103.4(3)
O(3)-N(5)-C(6)-C(1) -77.2(3)
C(8)-N(3)-C(7)-N(1) -0.3(3)
N(2)-N(1)-C(7)-N(3) 0.0(3)
C(2)-N(1)-C(7)-N(3) -173.8(2)
N(2)-N(1)-C(7)-C(8) -0.2(2)
C(2)-N(1)-C(7)-C(8) -174.0(2)
N(1)-N(2)-C(8)-N(3) -0.5(4)
N(1)-N(2)-C(8)-C(7) -0.20(19)
C(7)-N(3)-C(8)-N(2) 0.5(4)
C(14)-C(9)-C(10)-C(11) -0.5(3)
Cl(4)-C(9)-C(10)-N(9) 178.1(2)
Cl(4)-C(9)-C(10)-N(9) -0.1(3)
O(5)-N(9)-C(10)-C(9) -94.1(3)
O(6)-N(9)-C(10)-C(9) 86.6(3)
O(5)-N(9)-C(10)-C(11) 84.6(3)
O(6)-N(9)-C(10)-C(11) -94.8(3)
C(9)-C(10)-C(11)-C(12) -1.6(3)
N(9)-C(10)-C(11)-C(12) 179.7(2)
C(9)-C(10)-C(11)-Cl(5) -179.60(18)
N(9)-C(10)-C(11)-Cl(5) 1.8(3)
C(10)-C(11)-C(12)-C(13) 2.8(3)
Cl(5)-C(11)-C(12)-C(13) -179.26(17)
C(10)-C(11)-C(12)-N(6) -176.3(2)
Cl(5)-C(11)-C(12)-N(6) 1.6(3)
C(15)-N(6)-C(12)-C(13) -88.8(3)
N(7)-N(6)-C(12)-C(13) 86.0(3)
C(15)-N(6)-C(12)-C(11) 90.3(3)
N(7)-N(6)-C(12)-C(11) -94.9(3)
C(11)-C(12)-C(13)-C(14) -1.7(3)
N(6)-C(12)-C(13)-C(14) 177.3(2)
C(11)-C(12)-C(13)-Cl(6) -179.33(17)
N(6)-C(12)-C(13)-Cl(6) -0.2(3)
C(10)-C(9)-C(14)-C(13) 1.6(3)
Cl(4)-C(9)-C(14)-C(13) 179.74(18)
C(10)-C(9)-C(14)-N(10) -176.6(2)
Cl(4)-C(9)-C(14)-N(10) 1.5(3)
C(12)-C(13)-C(14)-C(9) -0.4(3)
Cl(6)-C(13)-C(14)-C(9) 177.11(18)
C(12)-C(13)-C(14)-N(10) 177.8(2)
Cl(6)-C(13)-C(14)-N(10) -4.7(3)
O(7)-N(10)-C(14)-C(9) -73.5(3)
O(8)-N(10)-C(14)-C(9) 105.7(3)
O(7)-N(10)-C(14)-C(13) 108.2(3)
O(8)-N(10)-C(14)-C(13) -72.5(3)
C(16)-N(8)-C(15)-N(6) 0.7(3)
N(7)-N(6)-C(15)-N(8) -0.9(3)
C(12)-N(6)-C(15)-N(8) 174.5(2)
N(7)-N(6)-C(15)-C(16) -0.40(19)
C(12)-N(6)-C(15)-C(16) 174.9(2)
N(6)-N(7)-C(16)-N(8) -0.2(3)
O(1)-N(7)-C(16)-N(8) 118.3(2)
O(1)-N(7)-C(16)-C(15) 118.10(13)
C(15)-N(8)-C(16)-N(7) -0.3(4)

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y+1,-z #2 x+1/2,-y+1/2,z-1/2 #3 -x+1,-y,-z
#4 x-1/2,-y+1/2,z+1/2

Table S7. Hydrogen bonds for 4 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(7)-H(7)...O(2)#1</td>
<td>0.93</td>
<td>2.66</td>
<td>3.323(4)</td>
<td>129.1</td>
</tr>
<tr>
<td>C(8)-H(8)...O(1)#2</td>
<td>0.93</td>
<td>2.55</td>
<td>3.396(4)</td>
<td>151.6</td>
</tr>
<tr>
<td>C(15)-H(15)...O(6)#3</td>
<td>0.93</td>
<td>2.53</td>
<td>3.237(3)</td>
<td>132.6</td>
</tr>
<tr>
<td>C(16)-H(16)...O(8)#4</td>
<td>0.93</td>
<td>2.52</td>
<td>3.348(4)</td>
<td>147.7</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y+1,-z #2 x+1/2,-y+1/2,z-1/2 #3 -x+1,-y,-z
#4 x-1/2,-y+1/2,z+1/2

Table S8. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for 5.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>8688(1)</td>
<td>9094(2)</td>
<td>2716(1)</td>
<td>65(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>11001(1)</td>
<td>6901(2)</td>
<td>1115(1)</td>
<td>62(1)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>6554(1)</td>
<td>547(2)</td>
<td>7501(1)</td>
<td>67(1)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>4189(1)</td>
<td>3308(2)</td>
<td>6054(1)</td>
<td>58(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>10231(3)</td>
<td>7638(6)</td>
<td>2532(3)</td>
<td>54(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>9990(3)</td>
<td>7643(5)</td>
<td>-258(2)</td>
<td>45(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>8521(2)</td>
<td>9081(4)</td>
<td>-211(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>8913(3)</td>
<td>9584(5)</td>
<td>-807(3)</td>
<td>54(1)</td>
</tr>
<tr>
<td>Atom</td>
<td>x-coord</td>
<td>y-coord</td>
<td>z-coord</td>
<td>Error</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>N(5)</td>
<td>7589(3)</td>
<td>9256(9)</td>
<td>-1126(4)</td>
<td>101(3)</td>
</tr>
<tr>
<td>N(6)</td>
<td>7897(2)</td>
<td>9796(4)</td>
<td>1214(3)</td>
<td>40(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>7201(3)</td>
<td>9116(5)</td>
<td>1310(4)</td>
<td>63(2)</td>
</tr>
<tr>
<td>N(8)</td>
<td>6953(3)</td>
<td>11239(5)</td>
<td>1227(4)</td>
<td>78(2)</td>
</tr>
<tr>
<td>N(9)</td>
<td>5050(3)</td>
<td>2180(6)</td>
<td>7417(3)</td>
<td>54(1)</td>
</tr>
<tr>
<td>N(10)</td>
<td>4981(3)</td>
<td>2572(5)</td>
<td>4623(3)</td>
<td>50(1)</td>
</tr>
<tr>
<td>N(11)</td>
<td>6412(3)</td>
<td>1060(4)</td>
<td>4594(3)</td>
<td>44(1)</td>
</tr>
<tr>
<td>N(12)</td>
<td>6356(4)</td>
<td>-109(6)</td>
<td>4272(4)</td>
<td>82(2)</td>
</tr>
<tr>
<td>N(13)</td>
<td>7157(4)</td>
<td>1156(8)</td>
<td>3609(3)</td>
<td>85(2)</td>
</tr>
<tr>
<td>N(14)</td>
<td>7201(2)</td>
<td>201(4)</td>
<td>5944(3)</td>
<td>43(1)</td>
</tr>
<tr>
<td>N(15)</td>
<td>7858(3)</td>
<td>854(5)</td>
<td>5703(4)</td>
<td>64(2)</td>
</tr>
<tr>
<td>N(16)</td>
<td>8194(3)</td>
<td>-1189(5)</td>
<td>6032(5)</td>
<td>89(2)</td>
</tr>
<tr>
<td>O(1)</td>
<td>10768(3)</td>
<td>8341(7)</td>
<td>2775(3)</td>
<td>101(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>10038(4)</td>
<td>6608(5)</td>
<td>2786(3)</td>
<td>86(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>9619(3)</td>
<td>6760(5)</td>
<td>-568(3)</td>
<td>72(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>10603(3)</td>
<td>8148(5)</td>
<td>-470(2)</td>
<td>67(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>5293(4)</td>
<td>3156(5)</td>
<td>7711(3)</td>
<td>97(2)</td>
</tr>
<tr>
<td>O(6)</td>
<td>4551(4)</td>
<td>1484(7)</td>
<td>7622(3)</td>
<td>113(2)</td>
</tr>
<tr>
<td>O(7)</td>
<td>4459(3)</td>
<td>1955(6)</td>
<td>4321(3)</td>
<td>92(2)</td>
</tr>
<tr>
<td>O(8)</td>
<td>5242(4)</td>
<td>3588(5)</td>
<td>4309(3)</td>
<td>104(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>9072(3)</td>
<td>8739(5)</td>
<td>1848(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>9786(3)</td>
<td>8063(5)</td>
<td>1815(3)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>10106(3)</td>
<td>7738(5)</td>
<td>1128(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>9679(3)</td>
<td>8095(5)</td>
<td>472(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>8954(3)</td>
<td>8776(4)</td>
<td>480(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>8651(3)</td>
<td>9123(4)</td>
<td>1185(3)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>7740(4)</td>
<td>11049(5)</td>
<td>1179(4)</td>
<td>61(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>6658(4)</td>
<td>10034(6)</td>
<td>1304(4)</td>
<td>67(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>7739(4)</td>
<td>8880(9)</td>
<td>-412(4)</td>
<td>82(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>8322(4)</td>
<td>9653(8)</td>
<td>-1333(4)</td>
<td>72(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>6098(3)</td>
<td>1102(5)</td>
<td>6661(3)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5410(3)</td>
<td>1854(5)</td>
<td>6675(3)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>5039(3)</td>
<td>2348(5)</td>
<td>6016(3)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>5375(3)</td>
<td>2056(5)</td>
<td>5333(3)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>6073(3)</td>
<td>1323(4)</td>
<td>5304(3)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>6448(3)</td>
<td>850(4)</td>
<td>5971(3)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>7415(4)</td>
<td>-1013(6)</td>
<td>6128(4)</td>
<td>66(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>8422(4)</td>
<td>-10(6)</td>
<td>5775(5)</td>
<td>81(2)</td>
</tr>
</tbody>
</table>
Table S9. Bond lengths [Å] and angles [°] for 5.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)-C(1)</td>
<td>1.717(5)</td>
</tr>
<tr>
<td>Cl(2)-C(3)</td>
<td>1.704(5)</td>
</tr>
<tr>
<td>Cl(3)-C(11)</td>
<td>1.717(5)</td>
</tr>
<tr>
<td>Cl(4)-C(13)</td>
<td>1.713(5)</td>
</tr>
<tr>
<td>N(1)-O(2)</td>
<td>1.196(7)</td>
</tr>
<tr>
<td>N(1)-O(1)</td>
<td>1.201(7)</td>
</tr>
<tr>
<td>N(1)-C(2)</td>
<td>1.489(7)</td>
</tr>
<tr>
<td>N(2)-O(3)</td>
<td>1.207(6)</td>
</tr>
<tr>
<td>N(2)-O(4)</td>
<td>1.208(6)</td>
</tr>
<tr>
<td>N(2)-C(4)</td>
<td>1.478(6)</td>
</tr>
<tr>
<td>N(3)-C(9)</td>
<td>1.331(7)</td>
</tr>
<tr>
<td>N(3)-N(4)</td>
<td>1.359(6)</td>
</tr>
<tr>
<td>N(3)-C(5)</td>
<td>1.410(6)</td>
</tr>
<tr>
<td>N(4)-C(10)</td>
<td>1.306(8)</td>
</tr>
<tr>
<td>N(5)-C(9)</td>
<td>1.322(8)</td>
</tr>
<tr>
<td>N(5)-C(10)</td>
<td>1.339(8)</td>
</tr>
<tr>
<td>N(6)-C(7)</td>
<td>1.313(7)</td>
</tr>
<tr>
<td>N(6)-N(7)</td>
<td>1.356(6)</td>
</tr>
<tr>
<td>N(6)-C(6)</td>
<td>1.421(6)</td>
</tr>
<tr>
<td>N(7)-C(8)</td>
<td>1.297(7)</td>
</tr>
<tr>
<td>N(8)-C(7)</td>
<td>1.315(7)</td>
</tr>
<tr>
<td>N(8)-C(8)</td>
<td>1.338(8)</td>
</tr>
<tr>
<td>N(9)-O(6)</td>
<td>1.158(7)</td>
</tr>
<tr>
<td>N(9)-O(5)</td>
<td>1.187(7)</td>
</tr>
<tr>
<td>N(9)-C(12)</td>
<td>1.495(7)</td>
</tr>
<tr>
<td>N(10)-O(7)</td>
<td>1.172(6)</td>
</tr>
<tr>
<td>N(10)-O(8)</td>
<td>1.203(7)</td>
</tr>
<tr>
<td>N(10)-C(14)</td>
<td>1.474(7)</td>
</tr>
<tr>
<td>N(11)-N(12)</td>
<td>1.328(7)</td>
</tr>
<tr>
<td>N(11)-C(19)</td>
<td>1.346(8)</td>
</tr>
<tr>
<td>N(11)-C(15)</td>
<td>1.417(6)</td>
</tr>
<tr>
<td>N(12)-C(20)</td>
<td>1.302(8)</td>
</tr>
<tr>
<td>N(13)-C(19)</td>
<td>1.303(9)</td>
</tr>
<tr>
<td>N(13)-C(20)</td>
<td>1.316(10)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>N(14)-C(17)</td>
<td>1.331(7)</td>
</tr>
<tr>
<td>N(14)-N(15)</td>
<td>1.356(6)</td>
</tr>
<tr>
<td>N(14)-C(16)</td>
<td>1.408(6)</td>
</tr>
<tr>
<td>N(15)-C(18)</td>
<td>1.284(8)</td>
</tr>
<tr>
<td>N(16)-C(17)</td>
<td>1.310(8)</td>
</tr>
<tr>
<td>N(16)-C(18)</td>
<td>1.352(9)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.366(7)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.382(7)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.381(7)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.367(7)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.382(6)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.402(7)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.371(7)</td>
</tr>
<tr>
<td>C(11)-C(16)</td>
<td>1.390(7)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.377(7)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.377(7)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.375(7)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.384(7)</td>
</tr>
<tr>
<td>C(17)-H(17)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>2.043(10)</td>
</tr>
<tr>
<td>C(19)-H(19)</td>
<td>0.9300</td>
</tr>
<tr>
<td>C(20)-H(20)</td>
<td>0.9300</td>
</tr>
<tr>
<td>O(2)-N(1)-O(1)</td>
<td>127.1(6)</td>
</tr>
<tr>
<td>O(2)-N(1)-C(2)</td>
<td>116.4(5)</td>
</tr>
<tr>
<td>O(1)-N(1)-C(2)</td>
<td>116.4(5)</td>
</tr>
<tr>
<td>O(3)-N(2)-O(4)</td>
<td>126.4(5)</td>
</tr>
<tr>
<td>O(3)-N(2)-C(4)</td>
<td>116.0(4)</td>
</tr>
<tr>
<td>O(4)-N(2)-C(4)</td>
<td>117.5(5)</td>
</tr>
<tr>
<td>C(9)-N(3)-N(4)</td>
<td>110.0(5)</td>
</tr>
<tr>
<td>C(9)-N(3)-C(5)</td>
<td>129.2(5)</td>
</tr>
<tr>
<td>N(4)-N(3)-C(5)</td>
<td>120.7(4)</td>
</tr>
<tr>
<td>C(10)-N(4)-N(3)</td>
<td>101.6(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C(9)-N(5)-C(10)</td>
<td>102.6(5)</td>
</tr>
<tr>
<td>C(7)-N(6)-N(7)</td>
<td>110.2(4)</td>
</tr>
<tr>
<td>C(7)-N(6)-C(6)</td>
<td>130.0(4)</td>
</tr>
<tr>
<td>N(7)-N(6)-C(6)</td>
<td>119.7(4)</td>
</tr>
<tr>
<td>C(8)-N(7)-N(6)</td>
<td>102.0(5)</td>
</tr>
<tr>
<td>C(7)-N(8)-C(8)</td>
<td>103.4(5)</td>
</tr>
<tr>
<td>O(6)-N(9)-O(5)</td>
<td>127.9(6)</td>
</tr>
<tr>
<td>O(6)-N(9)-C(12)</td>
<td>116.7(5)</td>
</tr>
<tr>
<td>O(5)-N(9)-C(12)</td>
<td>115.4(5)</td>
</tr>
<tr>
<td>O(7)-N(10)-O(8)</td>
<td>125.8(6)</td>
</tr>
<tr>
<td>O(7)-N(10)-C(14)</td>
<td>118.0(5)</td>
</tr>
<tr>
<td>O(8)-N(10)-C(14)</td>
<td>116.2(5)</td>
</tr>
<tr>
<td>N(12)-N(11)-C(19)</td>
<td>108.7(5)</td>
</tr>
<tr>
<td>N(12)-N(11)-C(15)</td>
<td>121.7(4)</td>
</tr>
<tr>
<td>C(19)-N(11)-C(15)</td>
<td>129.4(5)</td>
</tr>
<tr>
<td>C(20)-N(12)-N(11)</td>
<td>102.5(6)</td>
</tr>
<tr>
<td>C(19)-N(13)-C(20)</td>
<td>102.6(6)</td>
</tr>
<tr>
<td>C(17)-N(14)-N(15)</td>
<td>109.5(5)</td>
</tr>
<tr>
<td>C(17)-N(14)-C(16)</td>
<td>131.0(5)</td>
</tr>
<tr>
<td>N(15)-N(14)-C(16)</td>
<td>119.5(4)</td>
</tr>
<tr>
<td>C(18)-N(15)-N(14)</td>
<td>102.0(5)</td>
</tr>
<tr>
<td>C(17)-N(16)-C(18)</td>
<td>102.0(5)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>120.2(4)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(1)</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(1)</td>
<td>119.8(4)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>121.6(4)</td>
</tr>
<tr>
<td>C(1)-C(2)-N(1)</td>
<td>119.9(4)</td>
</tr>
<tr>
<td>C(3)-C(2)-N(1)</td>
<td>118.4(4)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>118.0(4)</td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>122.0(4)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(2)</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>122.1(4)</td>
</tr>
<tr>
<td>C(3)-C(4)-N(2)</td>
<td>117.5(4)</td>
</tr>
<tr>
<td>C(5)-C(4)-N(2)</td>
<td>120.2(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)</td>
<td>118.8(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-N(3)</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>C(6)-C(5)-N(3)</td>
<td>121.1(4)</td>
</tr>
<tr>
<td>C(1)-C(6)-C(5)</td>
<td>119.1(4)</td>
</tr>
</tbody>
</table>
C(1)-C(6)-N(6) 120.5(4)
C(5)-C(6)-N(6) 120.3(4)
N(6)-C(7)-N(8) 109.5(5)
N(6)-C(7)-H(7) 125.3
N(8)-C(7)-H(7) 125.3
N(7)-C(8)-N(8) 114.9(5)
N(7)-C(8)-H(8) 122.6
N(8)-C(8)-H(8) 122.6
N(5)-C(9)-N(3) 109.7(6)
N(5)-C(9)-H(9) 125.1
N(3)-C(9)-H(9) 125.1
N(4)-C(10)-N(5) 116.0(6)
N(4)-C(10)-H(10) 122.0
N(5)-C(10)-H(10) 122.0
C(12)-C(11)-C(16) 119.8(4)
C(12)-C(11)-Cl(3) 119.8(4)
C(16)-C(11)-Cl(3) 120.4(4)
C(11)-C(12)-C(13) 121.6(5)
C(11)-C(12)-N(9) 120.3(5)
C(13)-C(12)-N(9) 118.1(5)
C(12)-C(13)-C(14) 118.1(4)
C(12)-C(13)-Cl(4) 120.4(4)
C(14)-C(13)-Cl(4) 121.5(4)
C(15)-C(14)-C(13) 121.6(4)
C(15)-C(14)-N(10) 119.8(4)
C(13)-C(14)-N(10) 118.7(4)
C(14)-C(15)-C(16) 119.8(4)
C(14)-C(15)-N(11) 120.2(4)
C(16)-C(15)-N(11) 120.0(4)
C(15)-C(16)-C(11) 119.1(4)
C(15)-C(16)-N(14) 119.4(4)
C(11)-C(16)-N(14) 121.3(4)
N(16)-C(17)-N(14) 110.2(6)
N(16)-C(17)-H(17) 124.9
N(14)-C(17)-H(17) 124.9
N(15)-C(18)-N(16) 116.2(6)
N(15)-C(18)-H(18) 121.9
N(16)-C(18)-H(18) 121.9
N(13)-C(19)-N(11) 110.0(6)
N(13)-C(19)-C(20) 38.9(4)
N(11)-C(19)-C(20) 71.2(4)
N(13)-C(19)-H(19) 125.0
N(11)-C(19)-H(19) 125.0
C(20)-C(19)-H(19) 163.7
N(12)-C(20)-N(13) 116.0(6)
N(12)-C(20)-C(19) 77.6(4)
N(13)-C(20)-C(19) 38.5(4)
N(12)-C(20)-H(20) 122.0
N(13)-C(20)-H(20) 122.0
C(19)-C(20)-H(20) 160.4

Symmetry transformations used to generate equivalent atoms:

Table S10. Anisotropic displacement parameters (Å²x 10³) for 5. The anisotropic displacement factor exponent takes the form: -2π² [h²a²U₁₁ + ... + 2hka*b*U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>73(1)</td>
<td>78(1)</td>
<td>46(1)</td>
<td>-15(1)</td>
<td>23(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>46(1)</td>
<td>78(1)</td>
<td>61(1)</td>
<td>21(1)</td>
<td>12(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>65(1)</td>
<td>85(1)</td>
<td>50(1)</td>
<td>23(1)</td>
<td>-12(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>43(1)</td>
<td>62(1)</td>
<td>70(1)</td>
<td>-10(1)</td>
<td>3(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>53(3)</td>
<td>71(4)</td>
<td>38(3)</td>
<td>9(3)</td>
<td>-1(2)</td>
<td>6(3)</td>
</tr>
<tr>
<td>N(2)</td>
<td>43(2)</td>
<td>52(3)</td>
<td>39(2)</td>
<td>-3(2)</td>
<td>6(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>N(3)</td>
<td>32(2)</td>
<td>48(3)</td>
<td>44(3)</td>
<td>17(2)</td>
<td>-1(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>N(4)</td>
<td>44(3)</td>
<td>72(3)</td>
<td>46(3)</td>
<td>22(2)</td>
<td>0(2)</td>
<td>-10(2)</td>
</tr>
<tr>
<td>N(5)</td>
<td>50(3)</td>
<td>179(8)</td>
<td>70(4)</td>
<td>58(5)</td>
<td>-21(3)</td>
<td>-29(4)</td>
</tr>
<tr>
<td>N(6)</td>
<td>31(2)</td>
<td>29(2)</td>
<td>63(3)</td>
<td>4(2)</td>
<td>12(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>N(7)</td>
<td>35(2)</td>
<td>39(3)</td>
<td>117(5)</td>
<td>11(3)</td>
<td>23(3)</td>
<td>0(2)</td>
</tr>
<tr>
<td>N(8)</td>
<td>48(3)</td>
<td>44(3)</td>
<td>145(6)</td>
<td>23(3)</td>
<td>34(3)</td>
<td>17(2)</td>
</tr>
<tr>
<td>N(9)</td>
<td>46(3)</td>
<td>76(4)</td>
<td>40(3)</td>
<td>-8(3)</td>
<td>7(2)</td>
<td>-12(3)</td>
</tr>
<tr>
<td>N(10)</td>
<td>45(3)</td>
<td>61(3)</td>
<td>42(3)</td>
<td>8(2)</td>
<td>0(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>N(11)</td>
<td>38(2)</td>
<td>50(3)</td>
<td>47(3)</td>
<td>-8(2)</td>
<td>11(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>N(12)</td>
<td>91(4)</td>
<td>80(4)</td>
<td>80(4)</td>
<td>-38(3)</td>
<td>43(3)</td>
<td>-39(3)</td>
</tr>
<tr>
<td>N(13)</td>
<td>69(4)</td>
<td>128(6)</td>
<td>62(4)</td>
<td>-25(4)</td>
<td>30(3)</td>
<td>-25(4)</td>
</tr>
<tr>
<td>N(14)</td>
<td>35(2)</td>
<td>27(2)</td>
<td>65(3)</td>
<td>1(2)</td>
<td>2(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>N(15)</td>
<td>37(3)</td>
<td>37(3)</td>
<td>118(5)</td>
<td>6(3)</td>
<td>8(3)</td>
<td>1(2)</td>
</tr>
<tr>
<td>N(16)</td>
<td>54(3)</td>
<td>37(3)</td>
<td>175(7)</td>
<td>15(4)</td>
<td>13(4)</td>
<td>17(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>84(4)</td>
<td>161(6)</td>
<td>55(3)</td>
<td>20(3)</td>
<td>-28(3)</td>
<td>-35(4)</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>U(eq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(7)</td>
<td>812711701</td>
<td>112773</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8)</td>
<td>61069867</td>
<td>134980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(9)</td>
<td>73568529</td>
<td>-9899</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(10)</td>
<td>84069958</td>
<td>-182186</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(17)</td>
<td>7063-1645</td>
<td>629979</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(18)</td>
<td>8956165</td>
<td>565797</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(19)</td>
<td>69822701</td>
<td>426390</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S11. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 5.
Table S12. Torsion angles ['] for 5.

<table>
<thead>
<tr>
<th>Bond Sequence</th>
<th>Torsion Angle [']</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(9)-N(3)-N(4)-C(10)</td>
<td>0.1(\pm)8</td>
</tr>
<tr>
<td>C(5)-N(3)-N(4)-C(10)</td>
<td>176.6(\pm)6</td>
</tr>
<tr>
<td>C(7)-N(6)-N(7)-C(8)</td>
<td>1.7(\pm)7</td>
</tr>
<tr>
<td>C(6)-N(6)-N(7)-C(8)</td>
<td>-179.6(\pm)5</td>
</tr>
<tr>
<td>C(19)-N(11)-N(12)-C(20)</td>
<td>1.7(\pm)8</td>
</tr>
<tr>
<td>C(15)-N(11)-N(12)-C(20)</td>
<td>-173.5(\pm)6</td>
</tr>
<tr>
<td>C(17)-N(14)-N(15)-C(18)</td>
<td>-1.2(\pm)8</td>
</tr>
<tr>
<td>C(16)-N(14)-N(15)-C(18)</td>
<td>178.1(\pm)6</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)-C(3)</td>
<td>-0.3(\pm)7</td>
</tr>
<tr>
<td>C(1)-C(1)-C(2)-C(3)</td>
<td>178.8(\pm)4</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)-N(1)</td>
<td>-179.2(\pm)5</td>
</tr>
<tr>
<td>C(1)-C(1)-C(2)-N(1)</td>
<td>-0.1(\pm)7</td>
</tr>
<tr>
<td>O(2)-N(1)-C(2)-C(1)</td>
<td>87.6(\pm)7</td>
</tr>
<tr>
<td>O(1)-N(1)-C(2)-C(1)</td>
<td>-95.4(\pm)7</td>
</tr>
<tr>
<td>O(2)-N(1)-C(2)-C(3)</td>
<td>-91.4(\pm)6</td>
</tr>
<tr>
<td>O(1)-N(1)-C(2)-C(3)</td>
<td>85.6(\pm)7</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>-1.1(\pm)8</td>
</tr>
<tr>
<td>O(2)-N(1)-C(2)-C(3)</td>
<td>177.9(\pm)5</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-Cl(2)</td>
<td>179.7(\pm)4</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-Cl(2)</td>
<td>-1.4(\pm)7</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>0.9(\pm)7</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>-179.9(\pm)4</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-N(2)</td>
<td>-174.8(\pm)4</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-N(2)</td>
<td>4.4(\pm)7</td>
</tr>
<tr>
<td>O(3)-N(2)-C(4)-C(3)</td>
<td>104.7(\pm)6</td>
</tr>
<tr>
<td>O(4)-N(2)-C(4)-C(3)</td>
<td>-72.4(\pm)6</td>
</tr>
<tr>
<td>O(3)-N(2)-C(4)-C(5)</td>
<td>-71.1(\pm)6</td>
</tr>
<tr>
<td>O(4)-N(2)-C(4)-C(5)</td>
<td>111.8(\pm)5</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>0.6(\pm)7</td>
</tr>
<tr>
<td>N(2)-C(4)-C(5)-C(6)</td>
<td>176.2(\pm)4</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-N(3)</td>
<td>-177.7(\pm)4</td>
</tr>
<tr>
<td>N(2)-C(4)-C(5)-N(3)</td>
<td>-2.1(\pm)7</td>
</tr>
<tr>
<td>C(9)-N(3)-C(5)-C(4)</td>
<td>129.1(\pm)7</td>
</tr>
<tr>
<td>N(4)-N(3)-C(5)-C(4)</td>
<td>-46.6(\pm)7</td>
</tr>
<tr>
<td>C(9)-N(3)-C(5)-C(6)</td>
<td>-49.1(\pm)9</td>
</tr>
<tr>
<td>N(4)-N(3)-C(5)-C(6)</td>
<td>135.2(\pm)5</td>
</tr>
<tr>
<td>Bond Combination</td>
<td>Angle (deg)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C(2)-C(1)-C(6)</td>
<td>1.8(7)</td>
</tr>
<tr>
<td>Cl(1)-C(1)-C(6)</td>
<td>-177.3(3)</td>
</tr>
<tr>
<td>C(2)-C(1)-N(6)</td>
<td>178.3(4)</td>
</tr>
<tr>
<td>Cl(1)-C(1)-N(6)</td>
<td>-0.8(6)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-C(1)</td>
<td>-2.0(7)</td>
</tr>
<tr>
<td>N(3)-C(5)-C(6)-C(1)</td>
<td>176.3(4)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-N(6)</td>
<td>-178.4(4)</td>
</tr>
<tr>
<td>N(3)-C(5)-C(6)-N(6)</td>
<td>-0.2(7)</td>
</tr>
<tr>
<td>C(7)-N(6)-C(6)-C(1)</td>
<td>97.1(7)</td>
</tr>
<tr>
<td>N(7)-N(6)-C(6)-C(1)</td>
<td>-81.3(6)</td>
</tr>
<tr>
<td>C(7)-N(6)-C(6)-C(5)</td>
<td>-86.4(8)</td>
</tr>
<tr>
<td>N(7)-N(6)-C(6)-C(5)</td>
<td>95.2(6)</td>
</tr>
<tr>
<td>C(6)-N(6)-C(7)-N(8)</td>
<td>-1.7(8)</td>
</tr>
<tr>
<td>C(6)-N(6)-C(7)-N(8)</td>
<td>179.8(6)</td>
</tr>
<tr>
<td>C(8)-N(8)-C(7)-N(6)</td>
<td>0.8(9)</td>
</tr>
<tr>
<td>N(6)-N(7)-C(8)-N(8)</td>
<td>-1.3(9)</td>
</tr>
<tr>
<td>C(7)-N(8)-C(9)-N(5)</td>
<td>0.3(10)</td>
</tr>
<tr>
<td>C(10)-N(5)-C(9)-N(3)</td>
<td>1.4(11)</td>
</tr>
<tr>
<td>N(4)-N(3)-C(9)-N(5)</td>
<td>-1.0(10)</td>
</tr>
<tr>
<td>C(5)-N(3)-C(9)-N(5)</td>
<td>-177.1(7)</td>
</tr>
<tr>
<td>N(3)-N(4)-C(10)-N(5)</td>
<td>0.8(9)</td>
</tr>
<tr>
<td>C(9)-N(5)-C(10)-N(4)</td>
<td>-1.4(11)</td>
</tr>
<tr>
<td>C(16)-C(11)-C(12)-C(13)</td>
<td>1.5(7)</td>
</tr>
<tr>
<td>C(3)-C(11)-C(12)-C(13)</td>
<td>178.2(4)</td>
</tr>
<tr>
<td>C(16)-C(11)-C(12)-N(9)</td>
<td>-177.3(4)</td>
</tr>
<tr>
<td>C(3)-C(11)-C(12)-N(9)</td>
<td>-0.7(7)</td>
</tr>
<tr>
<td>O(6)-N(9)-C(12)-C(11)</td>
<td>-92.1(7)</td>
</tr>
<tr>
<td>O(5)-N(9)-C(12)-C(11)</td>
<td>90.5(7)</td>
</tr>
<tr>
<td>O(6)-N(9)-C(12)-C(13)</td>
<td>89.0(8)</td>
</tr>
<tr>
<td>O(5)-N(9)-C(12)-C(13)</td>
<td>-88.4(7)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(14)</td>
<td>0.6(7)</td>
</tr>
<tr>
<td>N(9)-C(12)-C(13)-C(14)</td>
<td>179.5(4)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)-C(4)</td>
<td>-178.9(4)</td>
</tr>
<tr>
<td>N(9)-C(12)-C(13)-C(4)</td>
<td>0.0(6)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(15)</td>
<td>-1.8(7)</td>
</tr>
<tr>
<td>C(12)-C(13)-C(14)-C(15)</td>
<td>177.7(4)</td>
</tr>
<tr>
<td>C(12)-C(13)-N(10)</td>
<td>179.6(4)</td>
</tr>
<tr>
<td>Cl(4)-C(13)-C(14)-N(10)</td>
<td>-0.9(7)</td>
</tr>
</tbody>
</table>
O(7)-N(10)-C(14)-C(15) 93.5(7)
O(8)-N(10)-C(14)-C(15) -85.0(7)
O(7)-N(10)-C(14)-C(13) -87.8(7)
O(8)-N(10)-C(14)-C(13) 93.7(7)
C(13)-C(14)-C(15)-C(16) 0.8(7)
N(10)-C(14)-C(15)-C(16) 179.4(4)
C(13)-C(14)-C(15)-N(11) -178.8(4)
N(10)-C(14)-C(15)-N(11) -0.2(7)
N(12)-N(11)-C(15)-C(14) -106.3(7)
C(19)-N(11)-C(15)-C(14) 79.6(8)
C(19)-N(11)-C(15)-C(16) -100.0(7)
C(14)-C(15)-C(16)-C(11) -1.4(7)
N(11)-C(15)-C(16)-C(11) -179.0(4)
C(14)-C(15)-C(16)-N(14) -174.3(4)
N(11)-C(15)-C(16)-N(14) 5.3(7)
N(12)-C(11)-C(16)-C(15) -2.5(7)
Cl(3)-C(11)-C(16)-C(15) -179.1(4)
C(12)-C(11)-C(16)-N(14) 173.1(4)
Cl(3)-C(11)-C(16)-N(14) -3.6(6)
C(17)-N(14)-C(16)-C(15) -118.5(7)
N(15)-N(14)-C(16)-C(15) 62.4(7)
N(15)-N(14)-C(16)-C(11) -113.2(6)
N(15)-N(14)-C(16)-C(11) -113.2(6)
N(15)-N(14)-C(16)-N(14) 6.4(7)
N(15)-N(14)-C(16)-N(14) 6.4(7)
N(15)-N(14)-C(17)-N(16) 1.1(8)
C(16)-N(14)-C(17)-N(16) -178.1(6)
N(14)-N(15)-C(18)-N(16) 0.9(10)
C(17)-N(16)-C(18)-N(15) -0.3(11)
C(20)-N(13)-C(19)-N(11) 3.7(9)
N(12)-N(11)-C(19)-N(13) -3.6(9)
C(15)-N(11)-C(19)-N(13) 171.1(6)
N(12)-N(11)-C(19)-C(20) -1.1(6)
C(15)-N(11)-C(19)-C(20) 173.6(6)
N(11)-N(12)-C(20)-N(13) 0.7(10)
N(11)-N(12)-C(20)-C(19) -1.1(5)
C(19)-N(13)-C(20)-N(12) -2.8(11)

Symmetry transformations used to generate equivalent atoms:
Table S13. Hydrogen bonds for 5 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th>ψ(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(9)-H(9)...N(7)</td>
<td>0.93</td>
<td>2.57</td>
<td>3.202(7)</td>
<td>125.6</td>
</tr>
<tr>
<td>C(8)-H(8)...O(6)#2</td>
<td>0.93</td>
<td>2.56</td>
<td>3.211(8)</td>
<td>127.4</td>
</tr>
<tr>
<td>C(7)-H(7)...O(4)#3</td>
<td>0.93</td>
<td>2.44</td>
<td>3.158(7)</td>
<td>134.1</td>
</tr>
<tr>
<td>C(7)-H(7)...N(15)#4</td>
<td>0.93</td>
<td>2.65</td>
<td>3.296(7)</td>
<td>127.2</td>
</tr>
<tr>
<td>C(17)-H(17)...N(7)#1</td>
<td>0.93</td>
<td>2.55</td>
<td>3.225(7)</td>
<td>129.9</td>
</tr>
<tr>
<td>C(9)-H(9)...N(7)</td>
<td>0.93</td>
<td>2.57</td>
<td>3.202(7)</td>
<td>125.6</td>
</tr>
<tr>
<td>C(8)-H(8)...O(6)#2</td>
<td>0.93</td>
<td>2.56</td>
<td>3.211(8)</td>
<td>127.4</td>
</tr>
<tr>
<td>C(7)-H(7)...O(4)#3</td>
<td>0.93</td>
<td>2.44</td>
<td>3.158(7)</td>
<td>134.1</td>
</tr>
<tr>
<td>C(7)-H(7)...N(15)#4</td>
<td>0.93</td>
<td>2.65</td>
<td>3.296(7)</td>
<td>127.2</td>
</tr>
<tr>
<td>C(7)-H(7)...O(4)#3</td>
<td>0.93</td>
<td>2.44</td>
<td>3.158(7)</td>
<td>134.1</td>
</tr>
<tr>
<td>C(8)-H(8)...O(6)#2</td>
<td>0.93</td>
<td>2.56</td>
<td>3.211(8)</td>
<td>127.4</td>
</tr>
<tr>
<td>C(9)-H(9)...N(7)</td>
<td>0.93</td>
<td>2.57</td>
<td>3.202(7)</td>
<td>125.6</td>
</tr>
<tr>
<td>C(17)-H(17)...N(7)#1</td>
<td>0.93</td>
<td>2.55</td>
<td>3.225(7)</td>
<td>129.9</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z+1/2 #2 -x+1,-y+1,-z+1 #3 -x+2,-y+2,-z
#4 x,-y+3/2,z-1/2

Table S14. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for 6. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>-3441(3)</td>
<td>6019(2)</td>
<td>4186(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>-1015(3)</td>
<td>4617(2)</td>
<td>3979(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>-953(2)</td>
<td>5810(2)</td>
<td>3452(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>-1034(3)</td>
<td>4585(2)</td>
<td>1973(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>1859(3)</td>
<td>4794(2)</td>
<td>772(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>4618(3)</td>
<td>6733(3)</td>
<td>1094(1)</td>
<td>64(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>4533(2)</td>
<td>8320(2)</td>
<td>2542(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>1763(3)</td>
<td>7640(2)</td>
<td>3746(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Value</td>
<td>-1904(2)</td>
<td>-39(3)</td>
<td>-212(2)</td>
<td>-1793(2)</td>
</tr>
<tr>
<td>Unit</td>
<td>Å</td>
<td>Å</td>
<td>Å</td>
<td>Å</td>
</tr>
<tr>
<td>Error</td>
<td>330(2)</td>
<td>1298(2)</td>
<td>162(2)</td>
<td>426(2)</td>
</tr>
</tbody>
</table>

Table S15. Bond lengths [Å] and angles [°] for 6.
N(3)-C(2) 1.329(3)
N(3)-C(3) 1.431(2)
N(4)-C(4) 1.323(3)
N(4)-H(4A) 0.8600
N(4)-H(4B) 0.8600
N(5)-O(1) 1.236(2)
N(5)-O(2) 1.242(2)
N(5)-C(5) 1.404(3)
N(6)-C(6) 1.318(3)
N(6)-H(6A) 0.8600
N(6)-H(6B) 0.8600
N(7)-O(4) 1.240(2)
N(7)-O(3) 1.253(2)
N(7)-C(7) 1.394(3)
N(8)-C(8) 1.325(3)
N(8)-H(8A) 0.8600
N(8)-H(8B) 0.8600
N(9)-C(10) 1.307(3)
N(9)-C(9) 1.352(3)
N(10)-C(9) 1.303(3)
N(10)-N(11) 1.368(2)
N(11)-C(10) 1.329(3)
N(11)-C(11) 1.430(2)
N(12)-C(12) 1.325(3)
N(12)-H(12A) 0.8600
N(12)-H(12B) 0.8600
N(13)-O(5) 1.234(2)
N(13)-O(6) 1.246(2)
N(13)-C(13) 1.408(3)
N(14)-C(14) 1.314(3)
N(14)-H(14A) 0.8600
N(14)-H(14B) 0.8600
N(15)-O(8) 1.238(2)
N(15)-O(7) 1.245(2)
N(15)-C(15) 1.392(3)
N(16)-C(16) 1.325(3)
N(16)-H(16A) 0.8600
N(16)-H(16B) 0.8600
C(1)-H(1A) 0.9300
C(2)-H(2A) 0.9300
C(3)-C(8) 1.390(3)
C(3)-C(4) 1.393(3)
C(4)-C(5) 1.436(3)
C(5)-C(6) 1.431(3)
C(6)-C(7) 1.440(3)
C(7)-C(8) 1.438(3)
C(9)-H(9) 0.9300
C(10)-H(10) 0.9300
C(11)-C(16) 1.388(3)
C(11)-C(12) 1.394(3)
C(12)-C(13) 1.433(3)
C(13)-C(14) 1.432(3)
C(14)-C(15) 1.433(3)
C(15)-C(16) 1.443(3)

C(2)-N(1)-C(1) 101.80(19)
C(1)-N(2)-N(3) 101.54(19)
C(2)-N(3)-N(2) 108.93(18)
C(2)-N(3)-C(3) 129.31(19)
N(2)-N(3)-C(3) 121.75(17)
C(4)-N(4)-H(4A) 120.0
C(4)-N(4)-H(4B) 120.0
H(4A)-N(4)-H(4B) 120.0
O(1)-N(5)-O(2) 117.77(18)
O(1)-N(5)-C(5) 120.82(18)
O(2)-N(5)-C(5) 121.40(19)
C(6)-N(6)-H(6A) 120.0
C(6)-N(6)-H(6B) 120.0
H(6A)-N(6)-H(6B) 120.0
O(4)-N(7)-O(3) 117.33(17)
O(4)-N(7)-C(7) 121.66(17)
O(3)-N(7)-C(7) 121.01(17)
C(8)-N(8)-H(8A) 120.0
C(8)-N(8)-H(8B) 120.0
H(8A)-N(8)-H(8B) 120.0
C(10)-N(9)-C(9) 102.19(18)
C(9)-N(10)-N(11) 101.89(19)
C(10)-N(11)-N(10) 109.01(17)
C(10)-N(11)-C(11) 129.89(18)
N(10)-N(11)-C(11) 121.09(17)
C(12)-N(12)-H(12A) 120.0
C(12)-N(12)-H(12B) 120.0
H(12A)-N(12)-H(12B) 120.0
O(5)-N(13)-O(6) 118.72(17)
O(5)-N(13)-C(13) 121.19(17)
O(6)-N(13)-C(13) 120.08(18)
C(14)-N(14)-H(14A) 120.0
C(14)-N(14)-H(14B) 120.0
H(14A)-N(14)-H(14B) 120.0
O(8)-N(15)-O(7) 117.57(18)
O(8)-N(15)-C(15) 121.55(17)
O(7)-N(15)-C(15) 120.85(17)
C(16)-N(16)-H(16A) 120.0
C(16)-N(16)-H(16B) 120.0
H(16A)-N(16)-H(16B) 120.0
N(2)-C(1)-N(1) 116.2(2)
N(2)-C(1)-H(1A) 121.9
N(1)-C(1)-H(1A) 121.9
N(1)-C(2)-N(3) 111.5(2)
N(1)-C(2)-H(2A) 124.2
N(3)-C(2)-H(2A) 124.2
C(8)-C(3)-C(4) 123.80(18)
C(8)-C(3)-N(3) 118.31(17)
C(4)-C(3)-N(3) 117.78(18)
N(4)-C(4)-C(3) 118.53(19)
N(4)-C(4)-C(5) 123.00(18)
C(3)-C(4)-C(5) 118.47(18)
N(5)-C(5)-C(6) 120.29(19)
N(5)-C(5)-C(4) 119.42(18)
C(6)-C(5)-C(4) 120.27(18)
N(6)-C(6)-C(5) 120.9(2)
N(6)-C(6)-C(7) 120.6(2)
C(5)-C(6)-C(7) 118.52(18)
N(7)-C(7)-C(8) 119.06(17)
N(7)-C(7)-C(6) 120.33(18)
C(8)-C(7)-C(6) 120.58(18)
N(8)-C(8)-C(3) 119.20(19)
N(8)-C(8)-C(7) 122.79(18)
C(3)-C(8)-C(7) 118.01(17)
N(10)-C(9)-N(9) 115.7(2)
N(10)-C(9)-H(9) 122.1
N(9)-C(9)-H(9) 122.1
N(9)-C(10)-N(11) 111.2(2)
N(9)-C(10)-H(10) 124.4
N(11)-C(10)-H(10) 124.4
C(16)-C(11)-C(12) 124.35(18)
C(16)-C(11)-N(11) 117.92(17)
C(12)-C(11)-N(11) 117.69(18)
N(12)-C(12)-C(11) 119.15(18)
N(12)-C(12)-C(13) 122.93(19)
C(11)-C(12)-C(13) 117.90(18)
N(13)-C(13)-C(14) 120.09(17)
N(13)-C(13)-C(12) 119.20(18)
C(14)-C(13)-C(12) 120.67(18)
N(14)-C(14)-C(13) 121.04(19)
N(14)-C(14)-C(15) 120.75(19)
C(13)-C(14)-C(15) 118.21(17)
N(15)-C(15)-C(14) 120.02(17)
N(15)-C(15)-C(16) 119.18(17)
C(14)-C(15)-C(16) 120.80(18)
N(16)-C(16)-C(11) 119.80(18)
N(16)-C(16)-C(15) 122.97(18)
C(11)-C(16)-C(15) 117.23(17)

Symmetry transformations used to generate equivalent atoms:

Table S16. Anisotropic displacement parameters (Å² x 10³) for 6. The anisotropic displacement factor exponent takes the form: -2π²[h² a² U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>36(1)</td>
<td>63(1)</td>
<td>45(1)</td>
<td>-10(1)</td>
<td>8(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>51(1)</td>
<td>44(1)</td>
<td>43(1)</td>
<td>4(1)</td>
<td>10(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>30(1)</td>
<td>32(1)</td>
<td>29(1)</td>
<td>-3(1)</td>
<td>4(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>45(1)</td>
<td>58(1)</td>
<td>50(1)</td>
<td>-26(1)</td>
<td>14(1)</td>
<td>-26(1)</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>42(1)</td>
<td>47(1)</td>
<td>29(1)</td>
<td>40(1)</td>
<td>35(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td></td>
<td>50(1)</td>
<td>96(2)</td>
<td>45(1)</td>
<td>61(1)</td>
<td>57(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td></td>
<td>39(1)</td>
<td>52(1)</td>
<td>36(1)</td>
<td>34(1)</td>
<td>31(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S17. Hydrogen coordinates (×10^4) and isotropic displacement parameters (Å^2×10^3) for 6.
Table S18. Torsion angles [°] for 6.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(4A)</td>
<td>-18824503</td>
<td>234861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(4B)</td>
<td>-11164156</td>
<td>151561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6A)</td>
<td>46346280</td>
<td>64077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6B)</td>
<td>54707321</td>
<td>118677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8A)</td>
<td>8937453</td>
<td>409953</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8B)</td>
<td>25898236</td>
<td>386153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(12A)</td>
<td>-231032</td>
<td>259451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(12B)</td>
<td>-2337471</td>
<td>347051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(14A)</td>
<td>28572980</td>
<td>439971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(14B)</td>
<td>43483354</td>
<td>378871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16A)</td>
<td>2615678</td>
<td>80951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(16B)</td>
<td>42361481</td>
<td>103551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>-29574154</td>
<td>480856</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(2A)</td>
<td>-26417483</td>
<td>331150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(9)</td>
<td>-12392432</td>
<td>57851</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(10)</td>
<td>-16491660</td>
<td>84942</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Torsion Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-N(2)-N(3)-C(2)</td>
<td>0.5(2)</td>
</tr>
<tr>
<td>C(1)-N(2)-N(3)-C(3)</td>
<td>-178.47(18)</td>
</tr>
<tr>
<td>C(9)-N(10)-N(11)-C(10)</td>
<td>0.0(2)</td>
</tr>
<tr>
<td>C(9)-N(10)-N(11)-C(11)</td>
<td>179.02(18)</td>
</tr>
<tr>
<td>N(3)-N(2)-C(1)-N(1)</td>
<td>-0.4(3)</td>
</tr>
<tr>
<td>C(2)-N(1)-C(1)-N(2)</td>
<td>0.1(3)</td>
</tr>
<tr>
<td>C(1)-N(1)-C(2)-N(3)</td>
<td>0.2(2)</td>
</tr>
<tr>
<td>N(2)-N(3)-C(2)-N(1)</td>
<td>-0.4(3)</td>
</tr>
<tr>
<td>C(3)-N(3)-C(2)-N(1)</td>
<td>178.40(19)</td>
</tr>
<tr>
<td>C(2)-N(3)-C(3)-C(8)</td>
<td>80.7(3)</td>
</tr>
<tr>
<td>N(2)-N(3)-C(3)-C(8)</td>
<td>-100.6(2)</td>
</tr>
<tr>
<td>C(2)-N(3)-C(3)-C(4)</td>
<td>-95.5(3)</td>
</tr>
<tr>
<td>N(2)-N(3)-C(3)-C(4)</td>
<td>83.1(3)</td>
</tr>
<tr>
<td>C(8)-C(3)-C(4)-N(4)</td>
<td>-173.6(2)</td>
</tr>
<tr>
<td>N(3)-C(3)-C(4)-N(4)</td>
<td>2.4(3)</td>
</tr>
<tr>
<td>C(8)-C(3)-C(4)-C(5)</td>
<td>6.3(3)</td>
</tr>
<tr>
<td>N(3)-C(3)-C(4)-C(5)</td>
<td>-177.70(19)</td>
</tr>
<tr>
<td>O(1)-N(5)-C(5)-C(6)</td>
<td>178.7(2)</td>
</tr>
</tbody>
</table>
O(2)-N(5)-C(5)-C(6) -2.2(4)
O(1)-N(5)-C(5)-C(4) -2.6(3)
O(2)-N(5)-C(5)-C(4) 176.4(2)
N(4)-C(4)-C(5)-N(5) -4.7(3)
C(3)-C(4)-C(5)-N(5) 175.4(2)
N(4)-C(4)-C(5)-C(6) 174.0(2)
C(3)-C(4)-C(5)-C(6) -6.0(3)
N(5)-C(5)-C(6)-N(6) 0.3(4)
C(4)-C(5)-C(6)-N(6) -178.3(2)
N(5)-C(5)-C(6)-C(7) -179.9(2)
C(4)-C(5)-C(6)-C(7) 1.5(3)
O(4)-N(7)-C(7)-C(8) -1.9(3)
O(3)-N(7)-C(7)-C(6) 177.6(2)
O(4)-N(7)-C(7)-C(6) 176.3(2)
O(3)-N(7)-C(7)-C(6) -4.3(3)
N(6)-C(6)-C(7)-N(7) 4.6(4)
C(5)-C(6)-C(7)-N(7) -175.2(2)
N(6)-C(6)-C(7)-C(8) -177.3(2)
C(5)-C(6)-C(7)-C(8) 3.0(3)
C(4)-C(3)-C(8)-N(8) 177.6(2)
N(3)-C(3)-C(8)-N(8) 1.6(3)
C(4)-C(3)-C(8)-C(7) -1.9(3)
N(3)-C(3)-C(8)-C(7) -177.89(18)
N(7)-C(7)-C(8)-N(8) -4.2(3)
C(6)-C(7)-C(8)-N(8) 177.6(2)
N(7)-C(7)-C(8)-C(3) 175.33(19)
C(6)-C(7)-C(8)-C(3) -2.9(3)
N(11)-N(10)-C(9)-N(9) 0.1(2)
C(10)-N(9)-C(9)-N(10) -0.2(3)
C(9)-N(9)-C(10)-N(11) 0.2(2)
N(10)-N(11)-C(10)-N(9) -0.2(2)
C(11)-N(11)-C(10)-N(9) -179.06(19)
C(10)-N(11)-C(11)-C(16) -92.1(3)
N(10)-N(11)-C(11)-C(16) 89.1(2)
C(10)-N(11)-C(11)-C(12) 90.2(3)
N(10)-N(11)-C(11)-C(12) -88.5(2)
C(16)-C(11)-C(12)-N(12) -179.9(2)
N(11)-C(11)-C(12)-N(12) -2.4(3)
C(16)-C(11)-C(12)-C(13) -1.2(3)
N(11)-C(11)-C(12)-C(13) 176.33(18)
O(5)-N(13)-C(13)-C(14) 168.6(2)
O(6)-N(13)-C(13)-C(14) -10.9(3)
O(5)-N(13)-C(13)-C(12) -9.1(3)
O(6)-N(13)-C(13)-C(12) 171.5(2)
N(12)-C(12)-C(13)-N(13) 3.2(3)
C(11)-C(12)-C(13)-N(13) -175.42(18)
N(12)-C(12)-C(13)-C(14) -174.4(2)
C(11)-C(12)-C(13)-C(14) 6.9(3)
N(13)-C(13)-C(14)-N(14) -1.5(3)
C(12)-C(13)-C(14)-N(14) 176.1(2)
N(13)-C(13)-C(14)-C(15) 178.09(19)
C(12)-C(13)-C(14)-C(15) -4.3(3)
O(8)-N(15)-C(15)-C(14) 173.7(2)
O(7)-N(15)-C(15)-C(14) -8.0(3)
O(8)-N(15)-C(15)-C(16) -5.4(3)
O(7)-N(15)-C(15)-C(16) 172.9(2)
N(14)-C(14)-C(15)-N(15) -3.5(3)
C(13)-C(14)-C(15)-N(15) 176.9(2)
N(14)-C(14)-C(15)-C(16) 175.5(2)
C(13)-C(14)-C(15)-C(16) -4.0(3)
C(12)-C(11)-C(16)-N(16) 173.9(2)
N(11)-C(11)-C(16)-N(16) -3.5(3)
C(12)-C(11)-C(16)-C(15) -6.9(3)
N(11)-C(11)-C(16)-C(15) 175.63(18)
N(15)-C(15)-C(16)-N(16) 7.7(3)
C(14)-C(15)-C(16)-N(16) -171.4(2)
N(15)-C(15)-C(16)-C(11) -171.5(2)
C(14)-C(15)-C(16)-C(11) 9.4(3)

Symmetry transformations used to generate equivalent atoms:

Table S19. Hydrogen bonds for 6 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10)-H(10)...O(8)#1</td>
<td>0.93</td>
<td>2.57</td>
<td>3.187(3)</td>
<td>124.1</td>
</tr>
<tr>
<td>C(9)-H(9)...O(1)#2</td>
<td>0.93</td>
<td>2.50</td>
<td>3.293(3)</td>
<td>143.5</td>
</tr>
<tr>
<td>C(2)-H(2A)...O(4)#1</td>
<td>0.93</td>
<td>2.60</td>
<td>3.308(3)</td>
<td>133.0</td>
</tr>
<tr>
<td>C(2)-H(2A)...O(3)#1</td>
<td>0.93</td>
<td>2.56</td>
<td>3.350(3)</td>
<td>142.4</td>
</tr>
<tr>
<td>Symmetry transformations used to generate equivalent atoms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 x-1,y,z #2 -x,-y,-z #3 -x,-y+1,-z+1 #4 x-1,y-1,z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 -x+1,-y+1,-z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S20. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 7. U(eq) is defined as one third of the trace of the orthogonalized U_ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>5350(2)</td>
<td>10302(2)</td>
<td>1634(2)</td>
<td>63(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>6340(2)</td>
<td>11033(2)</td>
<td>3585(2)</td>
<td>55(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>6822(2)</td>
<td>6506(2)</td>
<td>5847(2)</td>
<td>68(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>6251(2)</td>
<td>7473(2)</td>
<td>7136(2)</td>
<td>65(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>3040(2)</td>
<td>9992(2)</td>
<td>1687(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>1980(2)</td>
<td>10312(2)</td>
<td>1583(2)</td>
<td>46(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>1018(2)</td>
<td>10695(3)</td>
<td>1350(3)</td>
<td>77(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>5626(2)</td>
<td>10327(2)</td>
<td>2815(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>7260(2)</td>
<td>8895(2)</td>
<td>5212(2)</td>
<td>43(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>7910(2)</td>
<td>9235(2)</td>
<td>4647(2)</td>
<td>43(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>8623(2)</td>
<td>9512(2)</td>
<td>4290(2)</td>
<td>66(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>6209(2)</td>
<td>7246(2)</td>
<td>6054(2)</td>
<td>40(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>3646(2)</td>
<td>6828(2)</td>
<td>4879(2)</td>
<td>37(1)</td>
</tr>
<tr>
<td>N(10)</td>
<td>2661(2)</td>
<td>6294(2)</td>
<td>4148(2)</td>
<td>37(1)</td>
</tr>
<tr>
<td>N(11)</td>
<td>1811(2)</td>
<td>5717(2)</td>
<td>3650(2)</td>
<td>58(1)</td>
</tr>
<tr>
<td>N(12)</td>
<td>1913(2)</td>
<td>8181(2)</td>
<td>2589(2)</td>
<td>32(1)</td>
</tr>
</tbody>
</table>
Table S21. Bond lengths [Å] and angles [°] for 7.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-N(4)</td>
<td>1.207(2)</td>
</tr>
<tr>
<td>O(2)-N(4)</td>
<td>1.210(2)</td>
</tr>
<tr>
<td>O(3)-N(8)</td>
<td>1.200(3)</td>
</tr>
<tr>
<td>O(4)-N(8)</td>
<td>1.211(2)</td>
</tr>
<tr>
<td>N(1)-N(2)</td>
<td>1.237(3)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.402(3)</td>
</tr>
<tr>
<td>N(2)-N(3)</td>
<td>1.117(3)</td>
</tr>
<tr>
<td>N(4)-C(2)</td>
<td>1.459(3)</td>
</tr>
<tr>
<td>N(5)-N(6)</td>
<td>1.238(3)</td>
</tr>
<tr>
<td>N(5)-C(3)</td>
<td>1.399(3)</td>
</tr>
<tr>
<td>N(6)-N(7)</td>
<td>1.109(3)</td>
</tr>
<tr>
<td>N(8)-C(4)</td>
<td>1.466(3)</td>
</tr>
<tr>
<td>N(9)-N(10)</td>
<td>1.235(3)</td>
</tr>
<tr>
<td>N(9)-C(5)</td>
<td>1.400(3)</td>
</tr>
<tr>
<td>N(10)-N(11)</td>
<td>1.114(3)</td>
</tr>
<tr>
<td>N(12)-C(8)</td>
<td>1.341(3)</td>
</tr>
<tr>
<td>N(12)-N(13)</td>
<td>1.368(2)</td>
</tr>
<tr>
<td>N(12)-C(6)</td>
<td>1.418(3)</td>
</tr>
<tr>
<td>N(13)-C(7)</td>
<td>1.304(3)</td>
</tr>
<tr>
<td>N(14)-C(8)</td>
<td>1.297(3)</td>
</tr>
<tr>
<td>N(14)-C(7)</td>
<td>1.348(3)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.379(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.399(3)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.387(3)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.385(3)</td>
</tr>
</tbody>
</table>
[S 45 / S60]

C(4)-C(5) 1.385(3)
C(5)-C(6) 1.392(3)
C(7)-H(7) 0.9300
C(8)-H(8) 0.9300

N(2)-N(1)-C(1) 117.77(18)
N(3)-N(2)-N(1) 170.4(3)
O(1)-N(4)-O(2) 123.7(2)
O(1)-N(4)-C(2) 118.12(18)
O(2)-N(4)-C(2) 118.09(18)
N(6)-N(5)-C(3) 118.71(18)
N(7)-N(6)-N(5) 171.2(2)
O(3)-N(8)-O(4) 125.3(2)
O(3)-N(8)-C(4) 117.7(2)
O(4)-N(8)-C(4) 117.0(2)
N(10)-N(9)-C(5) 117.87(18)
N(11)-N(10)-N(9) 169.8(2)
C(8)-N(12)-N(13) 109.34(17)
C(8)-N(12)-C(6) 129.82(18)
N(13)-N(12)-C(6) 120.83(16)
C(7)-N(13)-N(12) 101.20(19)
C(8)-N(14)-C(7) 102.7(2)
C(6)-C(1)-C(2) 119.38(19)
C(6)-C(1)-N(1) 124.21(19)
C(2)-C(1)-N(1) 116.41(19)
C(3)-C(2)-C(1) 121.42(19)
C(3)-C(2)-N(4) 120.53(18)
C(1)-C(2)-N(4) 118.04(18)
C(4)-C(3)-C(2) 117.01(18)
C(4)-C(3)-N(5) 114.68(19)
C(2)-C(3)-N(5) 128.3(2)
C(5)-C(4)-C(3) 123.40(19)
C(5)-C(4)-N(8) 118.76(18)
C(3)-C(4)-N(8) 117.75(18)
C(4)-C(5)-C(6) 117.89(19)
C(4)-C(5)-N(9) 115.85(18)
C(6)-C(5)-N(9) 126.24(18)
C(1)-C(6)-C(5) 120.77(18)
C(1)-C(6)-N(12) 120.20(18)
C(5)-C(6)-N(12) 119.02(18)
N(13)-C(7)-N(14) 116.2(2)
N(13)-C(7)-H(7) 121.9
N(14)-C(7)-H(7) 121.9
N(14)-C(8)-N(12) 110.6(2)
N(14)-C(8)-H(8) 124.7
N(12)-C(8)-H(8) 124.7

Symmetry transformations used to generate equivalent atoms:

Table S22. Anisotropic displacement parameters (Å² x 10³) for 7. The anisotropic displacement factor exponent takes the form: -2π² | h² a*² U11 + ... + 2 h k a* b* U12 |

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>77(1)</td>
<td>72(1)</td>
<td>47(1)</td>
<td>2(1)</td>
<td>36(1)</td>
<td>-20(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>56(1)</td>
<td>43(1)</td>
<td>68(1)</td>
<td>-7(1)</td>
<td>27(1)</td>
<td>-15(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>51(1)</td>
<td>63(1)</td>
<td>78(1)</td>
<td>11(1)</td>
<td>19(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>72(1)</td>
<td>81(2)</td>
<td>33(1)</td>
<td>9(1)</td>
<td>14(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>34(1)</td>
<td>46(1)</td>
<td>44(1)</td>
<td>12(1)</td>
<td>16(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>44(1)</td>
<td>47(1)</td>
<td>41(1)</td>
<td>10(1)</td>
<td>14(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>54(2)</td>
<td>92(2)</td>
<td>82(2)</td>
<td>31(2)</td>
<td>27(1)</td>
<td>34(2)</td>
</tr>
<tr>
<td>N(4)</td>
<td>34(1)</td>
<td>37(1)</td>
<td>40(1)</td>
<td>-2(1)</td>
<td>20(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>25(1)</td>
<td>60(1)</td>
<td>41(1)</td>
<td>6(1)</td>
<td>11(1)</td>
<td>-6(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>26(1)</td>
<td>53(1)</td>
<td>46(1)</td>
<td>4(1)</td>
<td>12(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>N(7)</td>
<td>37(1)</td>
<td>91(2)</td>
<td>74(2)</td>
<td>12(1)</td>
<td>29(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>N(8)</td>
<td>28(1)</td>
<td>45(1)</td>
<td>41(1)</td>
<td>5(1)</td>
<td>9(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>N(9)</td>
<td>32(1)</td>
<td>40(1)</td>
<td>35(1)</td>
<td>3(1)</td>
<td>11(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>N(10)</td>
<td>36(1)</td>
<td>35(1)</td>
<td>43(1)</td>
<td>5(1)</td>
<td>20(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>N(11)</td>
<td>47(1)</td>
<td>48(1)</td>
<td>67(2)</td>
<td>6(1)</td>
<td>14(1)</td>
<td>-14(1)</td>
</tr>
<tr>
<td>N(12)</td>
<td>24(1)</td>
<td>38(1)</td>
<td>34(1)</td>
<td>0(1)</td>
<td>11(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>N(13)</td>
<td>28(1)</td>
<td>55(1)</td>
<td>48(1)</td>
<td>-2(1)</td>
<td>19(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>N(14)</td>
<td>30(1)</td>
<td>56(2)</td>
<td>54(1)</td>
<td>-1(1)</td>
<td>6(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>31(1)</td>
<td>32(1)</td>
<td>27(1)</td>
<td>-2(1)</td>
<td>12(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>31(1)</td>
<td>32(1)</td>
<td>32(1)</td>
<td>-3(1)</td>
<td>17(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>28(1)</td>
<td>38(1)</td>
<td>31(1)</td>
<td>-4(1)</td>
<td>14(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>27(1)</td>
<td>36(1)</td>
<td>29(1)</td>
<td>1(1)</td>
<td>11(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>29(1)</td>
<td>33(1)</td>
<td>30(1)</td>
<td>-2(1)</td>
<td>16(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>24(1)</td>
<td>32(1)</td>
<td>30(1)</td>
<td>-1(1)</td>
<td>11(1)</td>
<td>0(1)</td>
</tr>
</tbody>
</table>
Table S23. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^{-3}) for 7.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(7)</td>
<td>-7018213</td>
<td>247164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8)</td>
<td>14697434</td>
<td>79751</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S24. Torsion angles [°] for 7.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Torsion Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(5)-N(9)-N(10)-N(11)</td>
<td>176.4(13)</td>
</tr>
<tr>
<td>C(8)-N(12)-N(13)-C(7)</td>
<td>-0.4(3)</td>
</tr>
<tr>
<td>C(6)-N(12)-N(13)-C(7)</td>
<td>-179.4(2)</td>
</tr>
<tr>
<td>N(2)-N(1)-C(1)-C(6)</td>
<td>37.8(3)</td>
</tr>
<tr>
<td>N(2)-N(1)-C(1)-C(2)</td>
<td>-143.0(2)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)-C(3)</td>
<td>-3.5(3)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)-C(3)</td>
<td>177.3(2)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)-N(4)</td>
<td>177.90(18)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)-N(4)</td>
<td>-1.3(3)</td>
</tr>
<tr>
<td>O(1)-N(4)-C(2)-C(3)</td>
<td>126.8(2)</td>
</tr>
<tr>
<td>O(2)-N(4)-C(2)-C(3)</td>
<td>-50.7(3)</td>
</tr>
<tr>
<td>O(1)-N(4)-C(2)-C(1)</td>
<td>-54.6(3)</td>
</tr>
<tr>
<td>O(2)-N(4)-C(2)-C(1)</td>
<td>127.8(2)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-C(4)</td>
<td>1.2(3)</td>
</tr>
<tr>
<td>N(4)-C(2)-C(3)-C(4)</td>
<td>179.70(18)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-N(5)</td>
<td>-176.1(2)</td>
</tr>
<tr>
<td>N(4)-C(2)-C(3)-N(5)</td>
<td>2.5(3)</td>
</tr>
<tr>
<td>N(6)-N(5)-C(3)-C(4)</td>
<td>151.4(2)</td>
</tr>
<tr>
<td>N(6)-N(5)-C(3)-C(2)</td>
<td>-31.4(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>2.2(3)</td>
</tr>
<tr>
<td>N(5)-C(3)-C(4)-C(5)</td>
<td>179.83(19)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-N(8)</td>
<td>178.55(19)</td>
</tr>
<tr>
<td>N(5)-C(3)-C(4)-N(8)</td>
<td>-3.8(3)</td>
</tr>
<tr>
<td>O(3)-N(8)-C(4)-C(5)</td>
<td>101.1(2)</td>
</tr>
<tr>
<td>O(4)-N(8)-C(4)-C(5)</td>
<td>-80.2(3)</td>
</tr>
<tr>
<td>O(3)-N(8)-C(4)-C(3)</td>
<td>-75.4(3)</td>
</tr>
<tr>
<td>O(4)-N(8)-C(4)-C(3)</td>
<td>103.3(2)</td>
</tr>
</tbody>
</table>
C(3)-C(4)-C(5)-C(6) \ -3.1(3)
N(8)-C(4)-C(5)-C(6) \ -179.42(19)
C(3)-C(4)-C(5)-N(9) \ 178.50(19)
N(10)-N(9)-C(5)-C(4) \ -152.95(19)
N(10)-N(9)-C(5)-C(6) \ 28.9(3)
C(2)-C(1)-C(6)-C(5) \ 2.6(3)
N(1)-C(1)-C(6)-C(5) \ -178.27(19)
C(2)-C(1)-C(6)-N(12) \ -178.06(18)
N(1)-C(1)-C(6)-N(12) \ 1.1(3)
C(4)-C(5)-C(6)-C(1) \ 0.6(3)
N(9)-C(5)-C(6)-C(1) \ 178.80(19)
C(4)-C(5)-C(6)-N(12) \ -178.73(18)
N(9)-C(5)-C(6)-N(12) \ -0.6(3)
C(8)-N(12)-C(6)-C(1) \ 73.4(3)
N(13)-N(12)-C(6)-C(1) \ -107.8(2)
C(8)-N(12)-C(6)-C(5) \ -107.3(3)
N(13)-N(12)-C(6)-C(5) \ 71.5(3)
N(12)-N(13)-C(7)-N(14) \ 0.3(3)
C(8)-N(14)-C(7)-N(13) \ -0.1(3)
C(7)-N(14)-C(8)-N(12) \ -0.2(3)
N(13)-N(12)-C(8)-N(14) \ 0.4(3)
C(6)-N(12)-C(8)-N(14) \ 179.3(2)

Symmetry transformations used to generate equivalent atoms:

Table S25. Hydrogen bonds for 7 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S26. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for 8. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>6391(3)</td>
<td>1625(3)</td>
<td>1331(1)</td>
<td>30(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>5398(3)</td>
<td>266(4)</td>
<td>1373(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>6335(3)</td>
<td>1640(4)</td>
<td>2372(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>4033(3)</td>
<td>2320(4)</td>
<td>204(2)</td>
<td>42(1)</td>
</tr>
<tr>
<td>N(5)</td>
<td>4586(3)</td>
<td>3580(3)</td>
<td>-1008(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>N(6)</td>
<td>7745(3)</td>
<td>3631(4)</td>
<td>-1032(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td></td>
<td>N(7)</td>
<td>N(8)</td>
<td>N(9)</td>
<td>N(10)</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>10180(3)</td>
<td>9422(3)</td>
<td>10470(3)</td>
<td>10973(4)</td>
</tr>
<tr>
<td></td>
<td>2393(4)</td>
<td>1677(3)</td>
<td>2973(4)</td>
<td>343(5)</td>
</tr>
<tr>
<td></td>
<td>66(1)</td>
<td>1281(1)</td>
<td>1576(1)</td>
<td>2133(2)</td>
</tr>
<tr>
<td></td>
<td>36(1)</td>
<td>36(1)</td>
<td>49(1)</td>
<td>69(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N(1)</th>
<th>O(1)</th>
<th>O(2)</th>
<th>O(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3245(3)</td>
<td>3248(4)</td>
<td>10609(3)</td>
<td>11022(2)</td>
</tr>
<tr>
<td></td>
<td>3633(4)</td>
<td>-966(1)</td>
<td>-1534(1)</td>
<td>-338(1)</td>
</tr>
<tr>
<td></td>
<td>-966(1)</td>
<td>61(1)</td>
<td>58(1)</td>
<td>62(1)</td>
</tr>
<tr>
<td></td>
<td>61(1)</td>
<td>61(1)</td>
<td>61(1)</td>
<td>61(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C(1)</th>
<th>C(2)</th>
<th>C(3)</th>
<th>C(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6717(3)</td>
<td>5463(3)</td>
<td>5830(3)</td>
<td>7404(3)</td>
</tr>
<tr>
<td></td>
<td>2005(4)</td>
<td>2446(4)</td>
<td>3051(4)</td>
<td>3127(4)</td>
</tr>
<tr>
<td></td>
<td>714(1)</td>
<td>143(1)</td>
<td>-440(1)</td>
<td>-482(1)</td>
</tr>
<tr>
<td></td>
<td>28(1)</td>
<td>28(1)</td>
<td>28(1)</td>
<td>28(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C(5)</th>
<th>C(6)</th>
<th>C(7)</th>
<th>C(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8583(3)</td>
<td>8221(3)</td>
<td>6926(3)</td>
<td>5415(4)</td>
</tr>
<tr>
<td></td>
<td>2580(4)</td>
<td>2063(4)</td>
<td>2417(4)</td>
<td>351(5)</td>
</tr>
<tr>
<td></td>
<td>96(1)</td>
<td>664(1)</td>
<td>1933(1)</td>
<td>2004(2)</td>
</tr>
<tr>
<td></td>
<td>32(1)</td>
<td>32(1)</td>
<td>38(1)</td>
<td>48(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C(9)</th>
<th>C(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9759(4)</td>
<td>11351(4)</td>
</tr>
<tr>
<td></td>
<td>148(5)</td>
<td>2078(6)</td>
</tr>
<tr>
<td></td>
<td>1620(2)</td>
<td>2082(2)</td>
</tr>
<tr>
<td></td>
<td>64(1)</td>
<td>64(1)</td>
</tr>
</tbody>
</table>

Table S27. Bond lengths [Å] and angles [°] for 8.
N(7)-C(5) 1.454(4)
N(8)-C(9) 1.328(4)
N(8)-N(9) 1.365(3)
N(8)-C(6) 1.422(3)
N(9)-C(10) 1.305(4)
N(10)-C(9) 1.298(4)
N(10)-C(10) 1.347(5)
C(1)-C(6) 1.365(4)
C(1)-C(2) 1.423(4)
C(2)-C(3) 1.413(4)
C(3)-C(4) 1.435(4)
C(4)-C(5) 1.416(4)
C(5)-C(6) 1.402(4)
C(7)-H(7) 0.9300
C(8)-H(8) 0.9300
C(9)-H(9) 0.9300
C(10)-H(10) 0.9300
C(7)-N(1)-N(2) 109.5(2)
C(7)-N(1)-C(1) 130.0(2)
N(2)-N(1)-C(1) 120.5(2)
C(8)-N(2)-N(1) 101.8(2)
C(7)-N(3)-C(8) 102.7(2)
C(2)-N(4)-H(4B) 115(2)
C(2)-N(4)-H(4A) 115(2)
H(4B)-N(4)-H(4A) 128(3)
O(2)-N(5)-O(1) 119.0(2)
O(2)-N(5)-C(3) 121.0(2)
O(1)-N(5)-C(3) 120.0(2)
C(4)-N(6)-H(6A) 120.0
C(4)-N(6)-H(6B) 120.0
H(6A)-N(6)-H(6B) 120.0
O(3)-N(7)-O(4) 122.8(3)
O(3)-N(7)-C(5) 119.4(3)
O(4)-N(7)-C(5) 117.7(3)
C(9)-N(8)-N(9) 110.1(2)
C(9)-N(8)-C(6) 129.7(3)
N(9)-N(8)-C(6) 120.2(2)
<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10)-N(9)-N(8)</td>
<td>100.6(3)</td>
</tr>
<tr>
<td>C(9)-N(10)-C(10)</td>
<td>102.3(3)</td>
</tr>
<tr>
<td>C(6)-C(1)-N(1)</td>
<td>120.2(2)</td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)</td>
<td>120.7(2)</td>
</tr>
<tr>
<td>N(1)-C(1)-C(2)</td>
<td>119.0(2)</td>
</tr>
<tr>
<td>N(4)-C(2)-C(3)</td>
<td>124.7(3)</td>
</tr>
<tr>
<td>N(4)-C(2)-C(1)</td>
<td>117.3(3)</td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>118.0(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-N(5)</td>
<td>118.6(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>122.2(2)</td>
</tr>
<tr>
<td>N(5)-C(3)-C(4)</td>
<td>119.2(2)</td>
</tr>
<tr>
<td>N(6)-C(4)-C(5)</td>
<td>121.2(3)</td>
</tr>
<tr>
<td>N(6)-C(4)-C(3)</td>
<td>122.3(3)</td>
</tr>
<tr>
<td>C(5)-C(4)-C(3)</td>
<td>116.5(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>121.2(2)</td>
</tr>
<tr>
<td>C(6)-C(5)-N(7)</td>
<td>118.8(2)</td>
</tr>
<tr>
<td>C(4)-C(5)-N(7)</td>
<td>119.8(2)</td>
</tr>
<tr>
<td>C(1)-C(6)-C(5)</td>
<td>121.3(2)</td>
</tr>
<tr>
<td>C(1)-C(6)-N(8)</td>
<td>117.8(2)</td>
</tr>
<tr>
<td>N(3)-C(7)-N(1)</td>
<td>110.3(3)</td>
</tr>
<tr>
<td>N(3)-C(7)-H(7)</td>
<td>124.9</td>
</tr>
<tr>
<td>N(1)-C(7)-H(7)</td>
<td>124.9</td>
</tr>
<tr>
<td>N(2)-C(8)-N(3)</td>
<td>115.8(3)</td>
</tr>
<tr>
<td>N(2)-C(8)-H(8)</td>
<td>122.1</td>
</tr>
<tr>
<td>N(3)-C(8)-H(8)</td>
<td>122.1</td>
</tr>
<tr>
<td>N(10)-C(9)-N(8)</td>
<td>110.6(3)</td>
</tr>
<tr>
<td>N(10)-C(9)-H(9)</td>
<td>124.7</td>
</tr>
<tr>
<td>N(8)-C(9)-H(9)</td>
<td>124.7</td>
</tr>
<tr>
<td>N(9)-C(10)-N(10)</td>
<td>116.4(3)</td>
</tr>
<tr>
<td>N(9)-C(10)-H(10)</td>
<td>121.8</td>
</tr>
<tr>
<td>N(10)-C(10)-H(10)</td>
<td>121.8</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

Table S28. Anisotropic displacement parameters (Å² x 10³) for 8. The anisotropic displacement factor exponent takes the form: -2π²[h² a*² U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>31(1)</td>
<td>36(2)</td>
<td>26(1)</td>
<td>-1(1)</td>
<td>12(1)</td>
<td>-7(1)</td>
</tr>
</tbody>
</table>
Table S29. Hydrogen coordinates (Å x 10^4) and isotropic displacement parameters (Å^2 x 10^-3) for 8.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(6A)</td>
<td>86983632</td>
<td>-104565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(6B)</td>
<td>70153960</td>
<td>-137965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(7)</td>
<td>76173380</td>
<td>202545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(8)</td>
<td>4831-426</td>
<td>218858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(9)</td>
<td>9202-916</td>
<td>150661</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(10)</td>
<td>121952609</td>
<td>239177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(4B)</td>
<td>3320(40)</td>
<td>2520(40)</td>
<td>-149(15)</td>
<td>32(9)</td>
</tr>
<tr>
<td>H(4A)</td>
<td>3960(40)</td>
<td>1750(40)</td>
<td>584(17)</td>
<td>53(10)</td>
</tr>
</tbody>
</table>

Table S30. Torsion angles [°] for 8.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>31(2)</td>
<td>31(2)</td>
<td>23(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>28(2)</td>
<td>28(2)</td>
<td>29(2)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>29(2)</td>
<td>33(2)</td>
<td>25(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>33(2)</td>
<td>38(2)</td>
<td>28(2)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>25(2)</td>
<td>39(2)</td>
<td>32(2)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>26(2)</td>
<td>30(2)</td>
<td>28(2)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>38(2)</td>
<td>50(2)</td>
<td>24(2)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>59(2)</td>
<td>57(2)</td>
<td>36(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>47(2)</td>
<td>50(2)</td>
<td>53(2)</td>
<td>15(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>47(2)</td>
<td>87(3)</td>
<td>46(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>Bond</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-N(1)-N(2)-C(8)</td>
<td>0.0(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-N(1)-N(2)-C(8)</td>
<td>179.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(8)-N(9)-C(10)</td>
<td>-0.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-N(8)-N(9)-C(10)</td>
<td>-178.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-N(1)-C(1)-C(6)</td>
<td>53.7(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-N(1)-C(1)-C(6)</td>
<td>-126.1(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-N(1)-C(1)-C(2)</td>
<td>-121.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-N(1)-C(1)-C(2)</td>
<td>58.3(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(8)-N(9)-C(10)</td>
<td>-0.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-N(8)-N(9)-C(10)</td>
<td>-178.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-N(1)-C(1)-C(6)</td>
<td>53.7(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-N(1)-C(1)-C(6)</td>
<td>-126.1(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-N(1)-C(1)-C(2)</td>
<td>-121.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-N(1)-C(1)-C(2)</td>
<td>58.3(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(8)-N(9)-C(10)</td>
<td>-0.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-N(8)-N(9)-C(10)</td>
<td>-178.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond Formula</td>
<td>Bond Angle (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-N(8)</td>
<td>-174.1(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(7)-C(5)-C(6)-N(8)</td>
<td>11.4(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(8)-C(6)-C(1)</td>
<td>66.7(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(9)-N(8)-C(6)-C(1)</td>
<td>-115.5(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(8)-C(6)-C(5)</td>
<td>-116.7(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(9)-N(8)-C(6)-C(5)</td>
<td>61.2(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(8)-N(3)-C(7)-N(1)</td>
<td>-0.3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)-N(1)-C(7)-N(3)</td>
<td>0.2(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)-N(1)-C(7)-N(3)</td>
<td>-179.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)-N(2)-C(8)-N(3)</td>
<td>-0.2(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-N(3)-C(8)-N(2)</td>
<td>0.3(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)-N(10)-C(9)-N(8)</td>
<td>-0.2(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(9)-N(8)-C(9)-N(10)</td>
<td>0.5(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)-N(8)-C(9)-N(10)</td>
<td>178.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(8)-N(9)-C(10)-N(10)</td>
<td>0.5(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)-N(10)-C(10)-N(9)</td>
<td>-0.2(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

Table S31. Hydrogen bonds for 8 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th><(DHA)</th>
</tr>
</thead>
</table>

S 54 / S60
DSC plots for the title compounds

Fig. S5 DSC plot for compound 4

Fig. S6 DSC plot for compound 5
Fig. S7 DSC plot for compound 6

Fig. S8 DSC plot for compound 7
Fig. S9 DSC plot for compound 8

Fig. S10 DSC plot for compound 9
Theoretical study

All calculations were carried out at Gaussian 09 package. All molecules were optimized at DFT/B3LYP functional 6-31G** basis set, and the structures were conformed to be true local-energy minima on the potential-energy surface with frequency analysis. The change of enthalpy for the reactions at 298 K can be expressed as

\[\Delta H_{298} = \sum \Delta_H^r - \sum \Delta_H^p \]

(1)

where \(\Delta_H^r \) and \(\Delta_H^p \) are the HOF of reactants and products at 298 K, respectively, and \(\Delta H_{298} \) can be calculated using the following expression:

\[\Delta H_{298} = \Delta E_{298} + \Delta ZPE + \Delta H_T + \Delta nRT \]

(2)

where \(\Delta E_0 \) is the change in total energy between the products and the reactants at 0 K; \(\Delta ZPE \) is the difference between the zero-point energies (ZPE) of the products and the reactants at 0 K; \(\Delta H_T \) is thermal correction from 0 to 298 K. The \(\Delta(PV) \) value in eq (2) is the PV work term. It equals \(\Delta(nRT) \) for the reactions of ideal gas. For the isodesmic reactions, \(\Delta n = 0 \), so \(\Delta(PV) = 0 \). On the left side of Eq. (1), apart from target compound, all the others are called reference compounds. The HOF of reference compounds are available either from the experiments or from the high level computing like G2 method. Molar enthalpy of formation in solid state calculated by \(\Delta f H_s = \Delta f H_g - \Delta f H_{sub} \), enthalpy of formation in gas state (\(\Delta f H_g \)) was calculated by DFT method in combination with the isodesmic reactions, the sublimation enthalpy (\(\Delta f H_{sub} \)) was evaluated by the electrostatic potential method.

The detonation velocity and detonation pressure were calculated by the Kamlet-Jacobs formulas (3) and (4) as follows:

\[D = 1.01(NM^{1/2}Q^{1/2})^{1/2} (1 + 1.30p) \]

(3)

\[P = 1.558p^2NM^{1/2}Q^{1/2} \]

(4)

where \(D \) is the detonation velocity (km s\(^{-1}\)), \(P \) is the detonation pressure (GPa), \(N \) is the moles of detonation gases per gram of explosive, \(M \) is the average molecular weight (g mol\(^{-1}\)) of these gases. \(Q \) is the heat of detonation (cal g\(^{-1}\)), and is the loaded density (g cm\(^{-3}\)) of explosives.
Scheme 1 Isodesmic reaction

Table S32 Calculated total energy (E₀), zero point energy (ZPE), and thermal correction (Hₜ) and experimental gaseous heat of formation (ΔHₕgas) for the reference compounds. E₀ and ZPE are in (a.u.), Hₜ and HOF are in (kJ mol⁻¹).

<table>
<thead>
<tr>
<th>Compd.</th>
<th>ZPE</th>
<th>Hₜ</th>
<th>E₀</th>
<th>E_cor.</th>
<th>ΔHₜ</th>
<th>ΔHₕgas</th>
<th>ΔHₜ_sub</th>
<th>ΔHₕ_gas_solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>0.04416</td>
<td>0.04692</td>
<td>-40.478950</td>
<td>-40.432030</td>
<td>10.01</td>
<td>-74.6ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td>0.03377</td>
<td>0.03674</td>
<td>-56.523305</td>
<td>-56.486565</td>
<td>10.00</td>
<td>-45.9ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH₃</td>
<td>0.07303</td>
<td>0.07537</td>
<td>-79.759748</td>
<td>-79.684378</td>
<td>10.47</td>
<td>-84.0ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃NO₂</td>
<td>0.04894</td>
<td>0.05219</td>
<td>-244.963435</td>
<td>-244.911245</td>
<td>11.62</td>
<td>-74.7ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃N₃</td>
<td>0.04945</td>
<td>0.05364</td>
<td>-204.046787</td>
<td>-203.993147</td>
<td>14.22</td>
<td>238.4ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH₂NH₂</td>
<td>0.05224</td>
<td>0.05522</td>
<td>-111.815351</td>
<td>-111.760131</td>
<td>11.06</td>
<td>93.4ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzene</td>
<td>0.09861</td>
<td>0.10171</td>
<td>-232.157596</td>
<td>-232.055886</td>
<td>14.00</td>
<td>82.9ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-triazole</td>
<td>0.05877</td>
<td>0.06189</td>
<td>-242.195875</td>
<td>-242.133985</td>
<td>11.83</td>
<td>192.7ₚ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.19248</td>
<td>0.20531</td>
<td>-1048.21335</td>
<td>-1048.00804</td>
<td>45.84</td>
<td>207.4₀</td>
<td>175.6ₚ</td>
<td>31.7ₚ</td>
</tr>
<tr>
<td>7</td>
<td>0.14956</td>
<td>0.16824</td>
<td>-1372.852635</td>
<td>-1372.684395</td>
<td>59.44</td>
<td>1253.6</td>
<td>239.0₁</td>
<td>1014.6₈</td>
</tr>
<tr>
<td>8</td>
<td>0.21441</td>
<td>0.22927</td>
<td>-1233.851790</td>
<td>-1233.622520</td>
<td>52.6₁</td>
<td>537.4₃</td>
<td>221.1₉</td>
<td>316.2₄</td>
</tr>
<tr>
<td>9</td>
<td>0.18548</td>
<td>0.20439</td>
<td>-1450.281089</td>
<td>-1450.076699</td>
<td>62.0₈</td>
<td>1239.2</td>
<td>264.6₆</td>
<td>974.6₂</td>
</tr>
</tbody>
</table>
The experimental data are taken from Ref. 4.

Table S33 Predicted heats of formation ($\Delta H_{\text{f,solid}}$), densities ($\rho$), detonation velocities (D), detonation pressures (P), and oxygen balance (OB) for the title compounds together with TNT, RDX and HMX

<table>
<thead>
<tr>
<th>Comp.</th>
<th>$\Delta H_{\text{f,solid}}$ (kJ mol$^{-1}$)</th>
<th>ρ (g cm$^{-3}$)</th>
<th>D (km s$^{-1}$)</th>
<th>P (GPa)</th>
<th>OB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>31.77</td>
<td>1.73</td>
<td>6.55</td>
<td>18.53</td>
<td>-91.36</td>
</tr>
<tr>
<td>7</td>
<td>1014.68</td>
<td>1.77</td>
<td>7.50</td>
<td>24.67</td>
<td>-58.07</td>
</tr>
<tr>
<td>8</td>
<td>316.24</td>
<td>1.73</td>
<td>6.56</td>
<td>18.67</td>
<td>-96.32</td>
</tr>
<tr>
<td>9</td>
<td>974.62</td>
<td>1.75</td>
<td>7.13</td>
<td>22.19</td>
<td>-74.95</td>
</tr>
<tr>
<td>TNT</td>
<td>-67.36</td>
<td>1.65</td>
<td>6.94</td>
<td>22.00</td>
<td>-73.97</td>
</tr>
</tbody>
</table>

References

[1] (a) G. M. Sheldrick, SHELXS-97, *Program for solution of crystal structures*, University of Gottingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, *Program for refinement of crystal structures*, University of Gottingen, Germany, 1997.

