Supporting Information for

Investigation of rotameric conformations of substituted imidazo-[1, 2-a] pyrazine: experimental and theoretical approaches

Gulshan Kumar, Richa Goel, Kamaldeep Paul and Vijay Luxami*

School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab, India

E-mail: vluxami@thapar.edu

<table>
<thead>
<tr>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1</td>
<td>1H NMR spectra of Compound 1A</td>
</tr>
<tr>
<td>Figure S2</td>
<td>13C NMR spectra of Compound 1A</td>
</tr>
<tr>
<td>Figure S3</td>
<td>Mass spectra of compound 1A</td>
</tr>
<tr>
<td>Figure S4</td>
<td>FTIR spectra of compound 1A</td>
</tr>
<tr>
<td>Figure S5</td>
<td>1H NMR spectra of Compound 1B</td>
</tr>
<tr>
<td>Figure S6</td>
<td>13C NMR spectra of Compound 1B</td>
</tr>
<tr>
<td>Figure S7</td>
<td>Mass spectra of compound 1B</td>
</tr>
<tr>
<td>Figure S8</td>
<td>FTIR spectra of compound 1B</td>
</tr>
<tr>
<td>Figure S9</td>
<td>Experimental and theoretical 1H NMR (left) and 13C NMR (right) correlation for conformer 1B</td>
</tr>
<tr>
<td>Table S1</td>
<td>Experimental 1H NMR signals for conformer 1A and 1B</td>
</tr>
<tr>
<td>Figure S10</td>
<td>The absorption spectra of different compound 1A and 1B in CH$_3$CN.</td>
</tr>
<tr>
<td>Table S2</td>
<td>The calculated absorption value for conformer 1A and 1B in gas and CH$_3$CN solvent phase at B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular orbitals</td>
</tr>
<tr>
<td>Figure S11</td>
<td>Frontier Molecular orbital for conformer 1B</td>
</tr>
<tr>
<td>Figure S12</td>
<td>1H NMR spectra of Compound 2A</td>
</tr>
<tr>
<td>Figure S13</td>
<td>13C NMR spectra of Compound 2A</td>
</tr>
<tr>
<td>Figure S14</td>
<td>Mass spectra of compound 2A</td>
</tr>
<tr>
<td>Figure S15</td>
<td>FTIR Spectra of compound 2A</td>
</tr>
<tr>
<td>Figure S16</td>
<td>Experimental and theoretical 1H NMR (left) and 13C NMR (right) correlation for conformer 2A</td>
</tr>
<tr>
<td>Figure S17</td>
<td>1H NMR spectra of Compound 2B</td>
</tr>
<tr>
<td>Figure S18</td>
<td>13C NMR spectra of Compound 2B</td>
</tr>
<tr>
<td>Figure S19</td>
<td>Mass spectra of compound 2B</td>
</tr>
<tr>
<td>Figure S20</td>
<td>FTIR spectra of compound 2B</td>
</tr>
<tr>
<td>Table S3</td>
<td>Experimental 1H NMR signals for conformer 2A and 2B</td>
</tr>
<tr>
<td>Figure S21</td>
<td>The absorption spectra of different conformers 2A and 2B in CH$_3$CN.</td>
</tr>
<tr>
<td>Table S4</td>
<td>The calculated absorption value for conformer 2A and 2B in gas and CH$_3$CN solvent phase at B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular orbitals</td>
</tr>
<tr>
<td>Figure S22</td>
<td>Frontier Molecular orbital for conformer 2B</td>
</tr>
</tbody>
</table>
Figure S23 Frontier Molecular orbital for conformer 2A
Figure S1: 1H NMR spectra of Compound 1A

Figure S2: 13C NMR spectra of Compound 1A
Figure S3: Mass spectra of compound 1A

Figure S4: FTIR Spectra of compound 1A
Figure S5: 1H NMR spectra of Compound 1B

![Figure S5](image)

Figure S6: 13C NMR spectra of Compound 1B

![Figure S6](image)

Figure S7: Mass spectra of compound 1B

![Figure S7](image)
Figure S8: FTIR Spectra of compound 1B
Figure S9: Experimental and theoretical 1H NMR (left) and 13C NMR (right) correlation for conformer 1B

<table>
<thead>
<tr>
<th>H- position</th>
<th>1H NMR (IA)</th>
<th>1H NMR (IB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6'</td>
<td>9.54</td>
<td>7.99</td>
</tr>
<tr>
<td>5</td>
<td>8.23</td>
<td>7.77</td>
</tr>
<tr>
<td>2</td>
<td>7.90</td>
<td>7.68</td>
</tr>
<tr>
<td>3</td>
<td>7.74</td>
<td>7.47</td>
</tr>
<tr>
<td>4'</td>
<td>7.45</td>
<td>7.43</td>
</tr>
<tr>
<td>3'</td>
<td>7.05</td>
<td>7.34</td>
</tr>
<tr>
<td>5'</td>
<td>7.09</td>
<td>7.29</td>
</tr>
</tbody>
</table>
Figure S10: The absorption spectra of different compound 1A and 1B in CH$_3$CN.

Table S2: The calculated absorption value for conformer 1A and 1B in gas and CH$_3$CN solvent phase at B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular orbitals

<table>
<thead>
<tr>
<th>Excited State</th>
<th>λ_{ACN} (nm)</th>
<th>λ_{Gas} (nm)</th>
<th>λ_{Exp} (nm)</th>
<th>Osc. Strength</th>
<th>Symmetry</th>
<th>% Major Orbital Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S$_0$-S$_1$</td>
<td>370.20</td>
<td>388.50</td>
<td>380,</td>
<td>0.2567</td>
<td>Singlet-A</td>
<td>H\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_2$</td>
<td>329.15</td>
<td>326.29</td>
<td></td>
<td>0.1214</td>
<td>Singlet-A</td>
<td>H-1\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_3$</td>
<td>311.03</td>
<td>309.84</td>
<td></td>
<td>0.184</td>
<td>Singlet-A</td>
<td>H-2\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_4$</td>
<td>274.96</td>
<td>281.59</td>
<td>361,</td>
<td>0.0001</td>
<td>Singlet-A</td>
<td>H-4\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_5$</td>
<td>270.69</td>
<td>281.16</td>
<td>318</td>
<td>0.155</td>
<td>Singlet-A</td>
<td>H-3\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_6$</td>
<td>262.13</td>
<td>269.59</td>
<td></td>
<td>0.0688</td>
<td>Singlet-A</td>
<td>H\rightarrowL+1</td>
</tr>
<tr>
<td>1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S$_0$-S$_1$</td>
<td>381.54</td>
<td>402.60</td>
<td></td>
<td>0.2699</td>
<td>Singlet-A</td>
<td>H\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_2$</td>
<td>333.23</td>
<td>336.02</td>
<td></td>
<td>0.1178</td>
<td>Singlet-A</td>
<td>H-1\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_3$</td>
<td>300.16</td>
<td>300.28</td>
<td></td>
<td>0.1204</td>
<td>Singlet-A</td>
<td>H-2\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_4$</td>
<td>280.89</td>
<td>288.76</td>
<td>290</td>
<td>0.0006</td>
<td>Singlet-A</td>
<td>H-4\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_5$</td>
<td>278.85</td>
<td>288.73</td>
<td></td>
<td>0.1195</td>
<td>Singlet-A</td>
<td>H-3\rightarrowL</td>
</tr>
<tr>
<td>S$_0$-S$_6$</td>
<td>265.55</td>
<td>274.51</td>
<td></td>
<td>0.0294</td>
<td>Singlet-A</td>
<td>H-3\rightarrowL</td>
</tr>
</tbody>
</table>
Figure S11: Frontier Molecular orbital for conformer 1B
Figure S12: 1H NMR spectra of Compound 2A

Figure S13: 13C NMR spectra of Compound 2A
Figure S14: Mass spectra of compound 2A

Figure S15: FTIR Spectra of compound 2A
Figure S16: Experimental and theoretical 1H NMR (left) and 13C NMR (right) correlation for conformer 2A.
Figure S17: 1H NMR spectra of Compound 2B

Figure S18: 13C NMR spectra of Compound 2B
Figure S19: Mass spectra of compound 2B

Figure S20: FTIR spectra of compound 2B
Table S3. Experimental 1H NMR signals for conformer 2A and 2B

<table>
<thead>
<tr>
<th></th>
<th>2A</th>
<th>2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6'</td>
<td>8.59</td>
<td>10.7</td>
</tr>
<tr>
<td>5</td>
<td>8.29</td>
<td>7.84</td>
</tr>
<tr>
<td>2</td>
<td>7.88</td>
<td>7.8</td>
</tr>
<tr>
<td>3</td>
<td>7.65</td>
<td>7.5</td>
</tr>
<tr>
<td>4'</td>
<td>7.48</td>
<td>7.39</td>
</tr>
<tr>
<td>4''</td>
<td>7.33</td>
<td>7.29</td>
</tr>
<tr>
<td>6''</td>
<td>7.26</td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>7.18</td>
<td></td>
</tr>
<tr>
<td>3''</td>
<td>7.12</td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>7.06</td>
<td>7.18</td>
</tr>
<tr>
<td>5''</td>
<td>6.97</td>
<td>6.82</td>
</tr>
</tbody>
</table>

Figure S21: The absorption spectra of different conformers 2A and 2B in CH$_3$CN.

Table S4: The calculated absorption value for conformer 2A and 2B in gas and CH$_3$CN solvent phase at B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular orbitals.
Table 2A

<table>
<thead>
<tr>
<th>Excitation S_0-S_n</th>
<th>λ_{Gas} (nm)</th>
<th>λ_{ACN} (nm)</th>
<th>λ_{Exp} (nm)</th>
<th>Osc. Strength</th>
<th>Symmetry</th>
<th>Major orbital contribs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>387.15</td>
<td>377.15</td>
<td>380, 360, 265</td>
<td>0.1640</td>
<td>Singlet-A</td>
<td>H\rightarrowL 96%</td>
</tr>
<tr>
<td>2</td>
<td>375.78</td>
<td>357.40</td>
<td>380, 360, 265</td>
<td>0.0624</td>
<td>Singlet-A</td>
<td>H-1\rightarrowL 98%</td>
</tr>
<tr>
<td>3</td>
<td>326.38</td>
<td>325.97</td>
<td>380, 360, 265</td>
<td>0.0625</td>
<td>Singlet-A</td>
<td>H-2\rightarrowL 89%</td>
</tr>
<tr>
<td>4</td>
<td>315.62</td>
<td>313.60</td>
<td>380, 360, 265</td>
<td>0.1080</td>
<td>Singlet-A</td>
<td>H-3\rightarrowL 63%</td>
</tr>
<tr>
<td>5</td>
<td>297.45</td>
<td>290.59</td>
<td>380, 360, 265</td>
<td>0.4008</td>
<td>Singlet-A</td>
<td>H\rightarrowL+1 55%</td>
</tr>
<tr>
<td>6</td>
<td>292.17</td>
<td>286.91</td>
<td>380, 360, 265</td>
<td>0.2020</td>
<td>Singlet-A</td>
<td>H-4\rightarrowL 81%</td>
</tr>
</tbody>
</table>

Table 2B

<table>
<thead>
<tr>
<th>Excitation S_0-S_n</th>
<th>λ_{Gas} (nm)</th>
<th>λ_{ACN} (nm)</th>
<th>λ_{Exp} (nm)</th>
<th>Osc. Strength</th>
<th>Symmetry</th>
<th>Major orbital contribs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>406.33</td>
<td>391.19</td>
<td>375, 315</td>
<td>0.1003</td>
<td>Singlet-A</td>
<td>H\rightarrowL 91%</td>
</tr>
<tr>
<td>2</td>
<td>389.98</td>
<td>362.46</td>
<td>315, 260</td>
<td>0.1141</td>
<td>Singlet-A</td>
<td>H-1\rightarrowL 93%</td>
</tr>
<tr>
<td>3</td>
<td>335.74</td>
<td>329.86</td>
<td>315, 260</td>
<td>0.073</td>
<td>Singlet-A</td>
<td>H-2\rightarrowL 93%</td>
</tr>
<tr>
<td>4</td>
<td>321.73</td>
<td>317.88</td>
<td>315, 260</td>
<td>0.1328</td>
<td>Singlet-A</td>
<td>H\rightarrowL+1 80%</td>
</tr>
<tr>
<td>5</td>
<td>306.73</td>
<td>297.46</td>
<td>375, 315, 260</td>
<td>0.2859</td>
<td>Singlet-A</td>
<td>H-1\rightarrowL+1 61%</td>
</tr>
<tr>
<td>6</td>
<td>301.69</td>
<td>292.03</td>
<td>375, 315, 260</td>
<td>0.2095</td>
<td>Singlet-A</td>
<td>H-3\rightarrowL 59%</td>
</tr>
</tbody>
</table>

Diagrams

- **2A**
 - **HOMO**
 - **LUMO**

- **2B**
 - **HOMO**
 - **LUMO**
Figure S22: Frontier Molecular orbital for conformer 2B
Figure S23: Frontier Molecular orbital for conformer 2A