Economical Synthesis of FeNi alloy nanoparticles evenly dispersed two-dimensional reduced graphene oxide composites as thin and effective electromagnetic wave absorbers

Juan Lia, Dong Zhangb, Hui Qic, Guangming Wanga, Jimin Tanga, Ge Tiana, Anhua Liua,d, Huijuan Yue*a,d, Yang Yue and Shouhua Fenga

aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
bKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
cThe Second Hospital of Jilin University, Changchun 130041, P.R. China.
dKey Laboratory of High Performance Ceramic Fibers of Ministry of Education, College of Materials, Xiamen University, Xiamen 361005, China.
eState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, China.

Corresponding author: huijuan@jlu.edu.cn (Huijuan Yue)
Fig. S1 TG curves (a) of FeNi/rGO-2.8glu and FeNi/rGO-20 composites; SEM images of FeNi/rGO-2.8glu (b) and FeNi/rGO-20 (c) composites.

The FeNi/rGO-2.8glu and FeNi/rGO-20 composites are synthesized via the same experimental procedures except for the different dosages of glucose (2.8 mmol for FeNi/rGO-2.8glu, 7.6 mmol for FeNi/rGO-20). From Fig. S1a, it can be obviously noted that FeNi/rGO-2.8glu and FeNi/rGO-20 composites display remaining weight of 72.34% and 36.46%, respectively. The mass percentage of carbon-based materials can be accordingly calculated as 44.80% and 72.18%, respectively. The amount of carbon increases correspondingly as more glucose is added in the reaction. This indicates that the carbon formed by glucose is present in the product. Additionally, Fig. S1(b-c) both show purely two-dimensional structure for FeNi/rGO-2.8glu and FeNi/rGO-20 composites with no other morphologies. Again, it can manifest that glucose is carbonized into the amorphous carbon depositing on the surface of graphene.
Fig. S2 XRD pattern of FeNi/rGO-0glu composite without glucose.

Fig. S3 SEM (a) and TEM (b) images of FeNi/rGO-0glu composite without glucose.

Fig. S4 Typical Cole-Cole semicircles (ε' versus ε'') for FeNi/rGO-20 (a), FeNi/rGO-60 (b) and FeNi/rGO-100 (c).