Supporting Information for

A Bottom Up Approach Towards Artificial Oxygenases by Combining Iron Coordination Complexes and Peptides

Olaf Cussó,¹ Michael W. Giuliano,² Xavi Ribas,¹ Scott J. Miller^{3,*} and Miquel Costas^{1,*}

¹ QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain.

² Department of Chemistry and Biochemistry at the College of Charleston, South Carolina, United States.
³ Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States.

Contents

Supporting Information for	SI.1
1) Experimental Section	SI.3
1.1) Materials	SI.3
1.2) Instrumentation	SI.3
2) Synthesis of substrates	SI.4
3) Synthesis of peptides by solid phase	SI.6
3.1 Solid phase peptide coupling and Fmoc deprotection protocol	SI.6
4) Catalytic studies	SI.7
4.1. General procedure for epoxidation reaction (Scheme 3 and scheme 4)	SI.7
4.2. General procedure for epoxide isolation (Table 3)	SI.8
4.3. Peptide screening	SI.9
4.4. HRMS spectrum of the catalyst under catalysis conditions	SI.11
4.5. Study of non-linear effects	SI.122
5) Characterization of peptides and epoxides	SI.13
5.1. Mass spectrometry analyses of peptides	SI.13
5.2. Characterization of isolated epoxides	SI.20
References	SI.23
A1) ¹ H and ¹³ C{ ¹ H} NMR spectra of substrates	SI.24
A2) 1H and 13C{1H} NMR spectra of isolated epoxides	SI.26
A3) 1H NMR spectra of peptides	SI.34
A4) GC spectra of epoxides	SI.58
A5) HPLC spectra of epoxides	SI.60

1) Experimental Section

1.1) Materials

Reagents and solvents used were of commercially available reagent quality unless stated otherwise. Solvents were purchased from SDS and Scharlab. Solvents were purified and dried by passing through an activated alumina purification system (M-Braun SPS-800) or by conventional distillation techniques. For solid-phase peptide synthesis we used a cylindrical vessel with a fritted disc and a removable lid equipped The iron complexes were previously reported.¹

1.2) Instrumentation

Oxidation products were identified by comparison of their GC or HPLC retention times with those of independently prepared racemate compounds, and/or by ¹H and ¹³C{¹H}-NMR analyses. IR spectra were taken in a Mattson-Galaxy Satellite FT-IR spectrophotometer using a MKII Golden Gate single reflection ATR system. Elemental analyses were performed using a CHNS-O EA-1108 elemental analyzer from Fisons. NMR spectra were taken on BrukerDPX300 and DPX400 spectrometers using standard conditions (Spectra were taken in CDCl₃ and referenced to either TMS at 0.00 ppm). Electrospray ionization mass spectrometry (ESI-MS) experiments were performed on a Bruker Daltonics Esquire 3000 Spectrometer using a 1 > mM solution of the analyzed compound. High resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF-Q II[™] instrument with a ESI source at Serveis Tècnics of the University of Girona (for substrates and isolated epoxides the mass error were 5>ppm, and in the case of peptides were 3>ppm). Samples were introduced into the mass spectrometer ion source by direct infusion through a syringe pump and were externally calibrated using sodium formate. Chromatographic resolution of enantiomers was performed on an Agilent GC-7820-A chromatograph using a CYCLOSIL-B column, Sigma-Aldrich Supelco Astec CHIRALDEX G-TA column. HPLC data were recorded using an Agilent HP1100 chromatograph with CHIRALPAK IA, IB, IC, AS-H, OJ-H, OD-H, and OB-H columns

2) Synthesis of substrates

The following olefins were prepared according to the reported procedures.

(S2) 4-F α-methylstyrene. ¹H NMR data agree with values reported²

Published yield (not reported), obtained yield (72%)

(S3) 3-CF₃ α -methylstyrene. ¹H NMR data agree with values reported³

Published yield (87%), obtained yield (81%)

(S4) 2-Me α-methylstyrene. ¹H NMR data agree with values reported⁴

Published yield (83%), obtained yield (78%)

(S5) 2-F α -methylstyrene. ¹H NMR data agree with values reported⁴

Published yield (88%), obtained yield (72%)

(S6) 2-Cl α-methylstyrene. ¹H NMR data agree with values reported⁵

Published yield (81%), obtained yield (80%)

(**S7**) 2-Br α-methylstyrene. ¹H NMR data agree with values reported⁶

Published yield (96%), obtained yield (77%)

(S9) 2-Me α -ethylstyrene. ¹H NMR data agree with values reported⁷

Published yield (93%), obtained yield (65%)

(**S12**) Cis- β -ethylstyrene. ¹H NMR data agree with values reported⁸

Published yield (98%), obtained yield (94%)

Substrates **S1** and **S11** are commercially available.

Synthesis of alkenes from ketones (S8 and S10)

Representative procedure.

To a suspension of 2.32 g of methyltriphenylphosphinum bromide (6.34 mmol) in THF (30 mL) was added dropwise a solution of *n*-BuLi (4.4 mL, 1.6 M in hexane, 6.9 mmol) at 0°C during 30 minutes. The white suspension changed to a red solution and was stirred at 0°C for 90 min. The commercially available ketone (1.22 g, 6.22 mmol) was then added and the solution was stirred for 20 min at this temperature and then warmed to 70°C and stirred overnight. Afterward, the reaction was quenched with water (5 mL) and the organic layer separated using a separatory funnel. The aqueous layer was extracted with diethyl ether (3 × 50 mL), dried over MgSO₄, and the solvent was removed under reduced pressure. Finally, purification by flash chromatography over silica (hexane/ethyl acetate 98/2) was performed.

S8, Colorless oil; (44% yield); ¹H-NMR (CDCl₃, 400 MHz, 300K) δ, ppm 7.30 – 7.26 (m, 1H), 7.26 – 7.23 (m, 1H), 7.12 (td, J = 7.5, 1.2 Hz, 1H), 7.09 – 7.03 (m, 1H), 5.26 – 5.24 (m, 1H), 5.17 (dd, J = 1.5, 0.8 Hz, 1H), 2.56 – 2.46 (m, 2H), 1.08 (t, J = 7.4 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 161.1, 158.6, 146.7, 130.3, 130.2, 130.0, 130.0, 128.6, 128.5, 123.9, 123.8, 115.8, 115.5, 114.4, 114.4, 29.3, 12.7. HRMS(ESI+) *m/z* calculated for C₁₀H₁₁FNa [M+Na]⁺ 173.0737, found 173.0736.

S10, Yellow oil; (62% yield); ¹H-NMR (CDCl₃, 400 MHz, 300K) δ, ppm 8.27 (dt, J = 2.3, 1.1 Hz, 1H), 8.15 – 8.10 (m, 1H), 7.74 (ddd, J = 7.8, 1.8, 1.1 Hz, 1H), 7.53 – 7.47 (m, 1H), 5.45 – 5.37 (m, 1H), 5.23 (q, J = 1.4 Hz, 1H), 2.62 – 2.50 (m, 2H), 1.14 (t, J = 7.4 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 148.4, 147.9, 143.2, 132.0, 129.2, 122.1, 120.9, 113.5, 27.8, 12.7. HRMS(ESI+) *m/z* calculated for C₁₀H₁₁NO₂Na [M+Na]⁺ 200.0682, found 200.0677.

3) Synthesis of peptides by solid phase

3.1 Solid phase peptide coupling and Fmoc deprotection protocol

To pre-swollen resin (Chlorotrityl polystyrene resin that has been pre-loaded with Lisoleucine.) (0.35 mmols, ~30 min. in DCM) was added Fmoc-protected amino acid (1.75 mmols, 5 equiv.), HCTU (1.75 mmols, 5 equiv.), 6-CI-HOBt•H₂O (1.75 mmols, 5 equiv.) with DMF (25 mL), followed by NMM (3.5 mmols, N-methylmorpholine) (10 equiv.). The resin mixture was sealed and mixed for 2 h on a rotary mixer and then drained, washing with a combination of DMF (2 x 20 mL), DCM (2 x 20 mL), the Fmocprotecting group was removed with two treatments of 20% piperidine in DMF (v/v)(~25 mL) for 20 min. each, then washing with a combination of DMF (2 x 20 mL) and DCM (2 x 20 mL).

Resin was cleaved with a 4:1:1 mixture of DCM: 2,2,2-trifluoroethanol: acetic acid (25 mL), treating for 30-60 min before draining. The resulting solution, along with washes, was concentrated a couple of times with additional toluene.

We used 0.013 mmols in the case of small-scale peptide synthesis

Boc-Phe-^DPro-Hyp-Ileu-OH

Large-scale peptide purification. Peptide purification was carried out using a Biotage Isolera 1 system on a 30 g C18 column using the following:

Solvent A: 0.1 % formic acid in H₂O

Solvent B: 0.1 % formic acid in acetonitrile

Method: hold at 5 % B for 2 CV, gradient from 5% B to 100 % B over 14 CV, hold at 100 % B for 4 CV, re-equilibrate at 5 % CV for 2 CV.

1 CV ~ 20 mL

Peptide 7. White solid; (180 mg, 88% yield,); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 7.56 (br, 1H), 7.28-7.13 (m, 5H), 6.54 (br, 1H), 5.57 (br, 1H), 4.70-4.42 (m, 3H), 4.38-4.32 (m, 2H), 4.10 (br, 1H), 3.97 (br, 1H), 3.53-3.49 (m, 1H), 3.00-2.91 (m,1H), 2.35-2.25 (m, 2H), 2.11-1.88 (m, 4), 1.61-1.45 (m, 3H), 1.41-1.36 (m, 3H), 1.25-1.17 (m, 3H), 0.99-0.90 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ ppm 173.7, 172.1, 171.6, 171.0, 169.2, 156.0, 154.9, 136.8, 129.5, 128.5, 126.8, 80.8, 80.0, 69.4, 59.3, 57.9, 55.3, 53.5, 49.8, 47.3, 40.4, 39.7, 38.7, 37.8, 36.1, 28.1, 25.0, 15.6, 11.6. HRMS(ESI+) *m/z* calculated for $C_{30}H_{44}N_4O_8Na$ [M+Na]⁺ 611.3051, found 611.3046

To peptide 7 (5 mg, 0.008mmols, 1 equiv) was added EDC•HCI (1.1 equiv), HOBt•H₂O (1.1 equiv), and MeOH (300 μ L). The resulting solution was allowed to stir 48 h. The solvent was removed under reduced pressure and then it was diluted with DCM and washed with aqueous 0.5 M citric acid, half-saturated brine, and saturated aqueous NaHCO₃. The combined organics were dried over Na₂SO₄, filtered, and concentrated. Transparent oil was obtained, 86 % yield (4.4 mg, 0.007 mmols).

4) Catalytic studies

4.1. General procedure for epoxidation reaction (Scheme 3 and scheme 4)

An acetonitrile solution (0.6 mL) of a given olefin (0.013 mmol, final reaction concentration 0.02 M) and ^{Me2N}1Fe (0.2 mg, 0.26 µmol, 2 mol %, final reaction

concentration 0.43 mM) was prepared in a vial (3 mL) equipped with a stir bar at 0°C. 0.52 μ mol (4 mol %) of peptide solution in CH₃CN was added directly to the solution Then, 27 μ L of 0.011M solution of hydrogen peroxide solution 30% (2 equiv.) in CH₃CN was added by syringe pump over a period of 30 min at 0°C. The solution was further stirred at 0 °C for 10 minutes. At this point, the internal standard trimethoxybenzene was added and the solution was filtered through a silica gel plug and basic alumina plug, and the solvent was removed under reduced pressure to afford the epoxide product. To determine the conversion and enantioselectivity, the residue was dissolved in hexanes with a few drops of isopropanol and then was analyzed by HPLC (IC column)

The procedure for table 2 was the same but at -30°C using a cooled acetonitrile bath

4.2. General procedure for epoxide isolation (Table 3)

An acetonitrile solution (6 mL) of a given olefin (0.460 mmol, final reaction concentration 0.08 M) and $(S,S')^{Me2N}$ 1Fe (7 mg, 9.2 µmol, 2 mol %, final reaction concentration 1.5 mM) was prepared in a vial (30 mL) equipped with a stir bar and cooled in an acetonitrile frozen bath. 10.8 mg of peptide 7 (18.5 µmol, 4 mol %) was added directly to the solution Then, 310 µL of 1:9 v:v acetonitrile:hydrogen peroxide solution 70% (2 equiv.) was added by syringe pump over a period of 30 min. The solution was further stirred at -30 °C for 30 minutes. At this point, 15 mL of an aqueous NaHCO₃ saturated solution was added to the mixture. The resultant solution was extracted with DCM (3 x 10 mL). Organic fractions were combined, dried over MgSO₄, filtered through a silica gel plug, and the solvent was removed under reduced pressure to afford the epoxide product. This residue was purified by flash column chromatography over silica gel to obtain the pure epoxide (Hexane/AcOEt : 98/2). Finally, the epoxide product was dissolved in hexane and some drops of isopropanol and the was injected to HPLC

In the case of **S7**, catalyst loading was 8 mol % for (*S,S*^{*})^{Me2N}1Fe and 16 mol% for peptide 7

4.3. Peptide screening

This screening was performed with non purified peptides, just as they were cleaved from resin.

Table SI.1. Screening of peptides in the epoxidation reaction of α -methylstyrene and ^{Me2N}**1Fe** catalyst and hydrogen peroxide

	(S,S') ^{Me2N} 1Fe		(<i>R,R′</i>) ^{Me2}	^N 1Fe
Peptides	Conv. (%)	ee (%)	Conv. (%)	ee (%)
peptide 11 (Boc- <i>t</i> -Leu- ^D Pro-Val-Ileu-OH)	81	36	65	36
peptide 12 (Boc-Val- ^D Pro-Val-Ileu-OH)	82	30	70	36
peptide 13 (Boc-lleu- ^D Pro-Aib-lleu-OH)	67	44	45	32
peptide 14 (Boc-Val- ^D Pro-Aib-Ileu-OH)	82	36	68	36
peptide 15 (Ac-Phe- ^D Pro-Aib-Ileu-OH)	33	22	54	28
peptide 16 (Fmoc-Phe- ^D Pro-Aib-Ileu-OH)	24	26	32	28
peptide 17 (Z-Phe- ^D Pro-Aib-Ileu-OH)	65	38	58	38
peptide 18 (Boc-Phe- ^D Pro-Dibutgly-Ileu-OH)	72	32	95	35
peptide 19 (Boc-Phe- ^D Pro-Cle-Ileu-OH)	71	38	94	24
peptide 20 (Boc-Phe- ^D Pro-AC6C-Ileu-OH)	91	36	94	38
peptide 21 (Boc-Phe- ^D Pro-Gly-Ileu-OH)	83	40	91	27
peptide 22 (Boc-Phe- ^D Pro-Pro-Ileu-OH)	97	56	95	45
peptide 23 (Boc-Phe-Pro- ^D Pro-Ileu-OH)	83	37	90	28
peptide 24 (Boc-Phe- ^D Pro-Pip-Ileu-OH)	95	46	93	45
peptide 25 (Boc-Phe- ^D Pro-Hyp(Bz)-Ileu-OH)	94	56	89	42
peptide 26 (Boc-Phe- ^D Pro-Hyp(tBu)-Ileu-OH)	95	54	82	46
peptide 27 (Boc-Thr(tBu)- ^D Pro-Aib-Ileu-OH)	81	40	96	34
peptide 28 (Boc-Phe(4-I)- ^D Pro-Aib-Ileu-OH)	85	54	88	37
peptide 29 (Boc-3-(2-pyr)-Ala ^D Pro-Aib-Ileu-OH)	64	31	86	36
peptide 30 (Boc-2-Naph- ^D Pro-Aib-Ileu-OH)	85	49	90	37
peptide 31 (Boc- ^D Phe- ^D Pro-Aib-Ileu-OH)	15	30	45	32
peptide 32 (Boc-Bip- ^D Pro-Aib-Ileu-OH)	45	41	57	36
peptide 33 (Boc- ^{5F} Phe- ^D Pro-Aib-Ileu-OH)	60	50	88	54

peptide 34 (Boc-Hfe- ^D Pro-Aib-Ileu-OH)	44	46	60	44
peptide 35 (Boc-Phg- ^D Pro-Aib-Ileu-OH)	38	32	67	36
peptide 36 (Boc-Ala(1-Naph)- ^D Pro-Aib-Ileu-OH)	17	40	40	37
peptide 37 (Boc-2CN-Phe- ^D Pro-Aib-Ileu-OH)	88	52	83	40
peptide 38 (Boc-Tyr(tBu)- ^D Pro-Aib-Ileu-OH)	72	48	87	44
peptide 39 (Boc-Tyr(Bn)- ^D Pro-Aib-Ileu-OH)	87	44	88	42
peptide 40 (Boc-2CN-Phe- ^D Pro-Hyp-Ileu-OH)	95	52	94	46
peptide 41 (Boc-Phe(4-I)- ^D Pro-HYp-Ileu-OH)	88	52	85	45
peptide 42 (Boc- ^{5F} Phe- ^D Pro-Hyp-Ileu-OH)	88	56	83	52
peptide 43 (NPha-Phe- ^D Pro-Hyp-Ileu-OH)	81	32	72	36
peptide 44 (Boc-Val-Phe- ^D Pro-Hyp-Ileu-OH)	87	34	83	29
peptide 45 (Boc- ^D Val-Phe- ^D Pro-Hyp-Ileu-OH)	92	41	91	42
peptide 46 (Boc-Phe-Phe- ^D Pro-Hyp-Ileu-OH)	73	35	81	36
peptide 47 (Boc- ^D Phe-Phe- ^D Pro-Hyp-Ileu-OH)	85	38	84	40
peptide 7-MeO (Boc-Phe- ^D Pro-Hyp-Ileu-OMe)	-	-	-	-

Unless stated, reaction conditions are ^{Me2N}**1Fe (**2 mol%, 0.43 mM), α -methylstyrene (0.013 mmol, 0.021 M, 1 equiv.), H₂O₂ (2.3 equiv.) and peptide (4 mol %) in CH₃CN (0.6 mL) at 0°C during 30 min. Conversions determined by HPLC with trimethoxybenzene as internal standard. Ee's determined by HPLC (IC column)

4.4. HRMS spectrum of the catalyst under catalysis conditions

Figure SI.1. a) HRMS spectrum obtained during H_2O_2 addition (1 min since beginning of addition) in the catalytic oxidation of S1 by $(S,S')^{Me2N}Fe$ in presence of peptide 7 (1 equiv. respect to the catalyst). b) Amplified experimental (top) and simulated (bottom) peaks corresponding to (S,S')-[Fe(CF₃SO₃)(peptide7-H⁺)(^{Me2N}pdp)]⁺

b)

4.5. Study of non-linear effects

Fig. SI. 2. Demonstration of linear correlation between ee's of catalyst and epoxide in the asymmetric epoxidation of *ortho*-methyl- α -methylstyrene (**S4**)

Reaction conditions are 2 mol%, ^{Me2N}**1Fe**, peptide (4 mol %), H_2O_2 (2.3 equiv.) and in CH₃CN at 0°C during 30 min. Ee's determined by chiral GC

50:50 represents: 1 mol % of (S,S') enantiomer: 1 mol % of (R,R') enantiomer.

60:40 represents: 1.2 mol % of (S,S') enantiomer: 0.8 mol % of (R,R') enantiomer

70:30 represents: 1.4 mol % of (S,S') enantiomer: 0.6 mol % of (R,R') enantiomer

80:20 represents: 1.6 mol % of (S,S') enantiomer: 0.4 mol % of (R,R') enantiomer

90:10 represents: 1.8 mol % of (S,S') enantiomer: 0.2 mol % of (R,R') enantiomer

100:0 represents: 2 mol % of (S,S') enantiomer: 0 mol % of (R,R') enantiomer

5) Characterization of peptides and epoxides

5.1. Mass spectrometry analyses of peptides

reported by Miller and co-worlers ⁹

Chemical Formula: C₈₈H₈₈N₈O₁₃ Exact Mass: 1464,65 16.3 mg: 73 % yield HRMS: Calculated/Observed for C₈₈H₈₈N₈O₁₃Na²⁺ 755.3128/ 755.3110

reported by Miller and co-workers ¹⁰

 $\begin{array}{l} \mbox{Chemical Formula: } C_{62}H_{65}N_5O_{11} \\ \mbox{Exact Mass: } 1055,47 \\ \mbox{14.5 mg: } 90 \ \% \ yield \\ \mbox{HRMS: } Calculated/Observed for $ C_{62}H_{65}N_5O_{11}Na $ 1078.4573/ $ 1078.4549 \\ \end{array}$

HRMS: Calculated/Observed for C₂₉H₄₄N₄O₇Na 583.3102/ 583.3115 HRMS: Calculated/Observed for C₃₂H₄₃N₄O₇⁺ 617.2946/ 617.2961

HRMS: Calculated/Observed for $C_{30}H_{44}N_4O_8Na^+$ 611.3051./ 611.3046

9.1 mg: 92 % yield HRMS: Calculated/Observed for $C_{26}H_{46}N_4O_7Na$ 549.3259/ 549.3254

Chemical Formula: C₂₆H₄₆N₄O₇ Exact Mass: 526,34

 $\begin{array}{l} Chemical \ Formula: \ C_{30}H_{46}N_4O_7\\ Exact \ Mass: \ 574,34\\ 8.1\ mg: \ 82\ \%\ yield\\ HRMS: \ Calculated/Observed \ for \ C_{30}H_{46}N_4O_7Na\ \ 597.3259/\ 597.3254 \end{array}$

Chemical Formula: C₂₅H₄₂N₄O₇ Exact Mass: 510,31

 $\begin{array}{c} Chemical \ Formula: \ C_{26}H_{46}N_4O_7\\ Exact \ Mass: \ 526,34\\ 4.5\ mg: \ 66\ \%\ yield\\ HRMS: \ Calculated/Observed \ for \ C_{26}H_{46}N_4O_7Na\ 549.3259/\ 549.3262\\ \end{array}$

Chemical Formula: C₂₅H₄₄N₄O₇ Exact Mass: 512,32

 Peptide 15

Chemical Formula: C₂₆H₃₈N₄O₆ Exact Mass: 502,28 6.2 mg: 95 % yield

HRMS: Calculated/Observed for C₂₆H₃₈N₄O₆Na 525.2684/ 525.2689 HRMS: Calcul

HRMS: Calculated/Observed for C₃₂H₄₂N₄O₇Na 617.2946/ 617.2948

Chemical Formula: C₃₉H₄₆N₄O₇ Exact Mass: 682,34

7.1 mg: 90 % yield HRMS: Calculated/Observed for C₃₉H₄₆N₄O₇Na 705.3259/ 705.3261

 $\begin{array}{l} Chemical \ Formula: \ C_{35}H_{56}N_4O_7\\ Exact \ Mass: \ 644,41\\ 4.5 \ mg: \ 59 \ \% \ yield\\ HRMS: \ Calculated/Observed \ for \ C_{35}H_{56}N_4O_7Na \ \ 667.4068/ \ 667.4041 \end{array}$

Exact Mass: 586,34 6.7 mg: 90% yield HRMS: Calculated/Observed for C₃₁H₄₆N₄O₇Na 609.3259/ 609.3260

Chemical Formula: C₃₂H₄₈N₄O₇ Exact Mass: 600,35 6 mg: 80 % yield

HRMS: Calculated/Observed for C₃₂H₄₈N₄O₇Na 623.3415/ 623.3426

Chemical Formula: C₂₉H₄₄N₄O₇ Exact Mass: 560,32

7.1 mg: 76 % yield HRMS: Calculated/Observed for $C_{29}H_{44}N_4O_7Na~583.3102/$

583.3093 Peptide 33

Chemical Formula: C₂₉H₃₉F₅N₄O₇ Exact Mass: 650,27 3.6 mg: 51% yield

HRMS: Calculated/Observed for C₂₉H₃₉F₅N₄O₇Na 673.2631/ 673.2620

Chemical Formula: C₂₈H₄₂N₄O₇ Exact Mass: 546,31 6.6 mg: 87 % yield

HRMS: Calculated/Observed for C₂₈H₄₂N₄O₇Na 569.2946/ 569.2931 HRMS: Calculated/Observed for C₃₃H₄₆N₄O₇Na 633.3259/ 633.3239

Chemical Formula: C₃₅H₄₈N₄O₇ Exact Mass: 636,35

3.4 mg: 46 % yield

HRMS: Calculated/Observed for $C_{35}H_{48}N_4O_7Na$ $\,659.3415/\,659.3400$

Chemical Formula: C₃₀H₄₆N₄O₇ Exact Mass: 574,34 4.4 mg: 56 % yield

HRMS: Calculated/Observed for C₃₀H₄₆N₄O₇Na 597.3259/ 597.3250 **Peptide 36**

Chemical Formula: C₃₃H₄₆N₄O₇ Exact Mass: 610,34

5.6 mg: 68 % yield S: Calculated/Observed for CaaHaeN4O7Na 633,3259/ 633,323

 $\begin{array}{c} Chemical \ Formula: \ C_{30}H_{43}IN_4O_8\\ Exact \ Mass: \ 714,21\\ 7.1 \ mg: \ 81 \ \% \ yield\\ HRMS: \ Calculated/Observed \ for \ C_{30}H_{43}IN_4O_8Na\\ \ 737.2018/ \ 737.2006 \end{array}$

Chemical Formula: C₃₃H₅₂N₄O₈ Exact Mass: 632,38 6.5 mg: 79 % yield HRMS: Calculated/Observed for C₃₃H₅₃N₄O₈Na 655.3677/ 655.3674

Chemical Formula: C₃₁H₄₃N₅O₈ Exact Mass: 613,31 4.9 mg: 62 % yield HRMS: Calculated/Observed for C₃₁H₄₃N₅O₈Na 636.3004/ 636.3004

Chemical Formula: C₃₀H₃₉F₅N₄O₈ Exact Mass: 678,27

 $6.7 \ mg: 76 \ \% \ yield \\ \text{HRMS: Calculated/Observed for } C_{30}H_{39}F_5N_4O_7Na \ 701.2580/ \ 701.2567 \\$

 $\begin{array}{c} Chemical \ Formula: \ C_{37}H_{40}N_4O_8\\ Exact \ Mass: \ 668,28\\ 5.9 \ mg: \ 68 \ \% \ yield\\ HRMS: \ Calculated/Observed \ for \ C_{37}H_{40}N_4O_8Na \ \ 691.2738/ \ 691.2712 \end{array}$

 $\begin{array}{l} \mbox{Chemical Formula: } C_{35}H_{53}N_5O_8 \\ \mbox{Exact Mass: } 671,39 \\ \mbox{7.2 mg: 83 \% yield} \\ \mbox{HRMS: } Calculated/Observed for $ C_{35}H_{53}N_5O_8Na $ 694.3786/ $ 694.3787 \\ \end{array}$

Chemical Formula: C₃₅H₅₃N₅O₈ Exact Mass: 671,39 7.3 mg: 84 % yield Chemical Formula: C₃₉H₅₃N₅O₈ Exact Mass: 719,39 6.4 mg: 69 % yield

HRMS: Calculated/Observed for C₃₅H₅₃N₅O₈Na 694.3786/ 694.3789 HRMS: Calculated/Observed for C₃₉H₅₃N₅O₈Na 742.3786/ 742.3787

Chemical Formula: C₃₉H₅₃N₅O₈ Exact Mass: 719,39 6 mg: 64 % yield Peptide 7-MeO

Chemical Formula: C₃₁H₄₆N₄O₈ Exact Mass: 602,33 4.4 mg: 86% yield

 $HRMS: Calculated/Observed for C_{39}H_{53}N_5O_8Na \ 742.3786/ \ 742.3782 \\ HRMS: Calculated/Observed for C_{31}H_{46}N_4O_8Na \ 625.3208./ \ 625.3199. \\ here (2.3) \ 625.3208./ \ 625.3$

S3, colorless oil; (75% yield, 68% ee); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 7.62 (s, 1H), 7.54 (t, J = 9.0 Hz, 2H), 7.45 (t, J = 7.8 Hz, 1H), 3.00 (d, J = 5.3 Hz, 1H), 2.78 (d, J = 5.3 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm 142.3, 131.1, 130.9, 130.7, 130.5, 128.8, 128.7, 126.7, 124.9, 124.3, 124.3, 124.3, 124.2, 123.1, 122.2, 122.2, 122.2, 122.1, 121.3, 57.0, 56.3, 21.5. HRMS(ESI+) *m/z* calculated for C₁₀H₉F₃ONa [M+Na]⁺ 225.0498, found 225.0493. HPLC-separation conditions: Chiralpack OB-H 25°C, 220 nm, 99.9/0.1 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 8.7 min, r.t.(minor) = 10.2 min

S4, colorless oil; (80% yield, 92% ee); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 7.38 – 7.34 (m, 1H), 7.18 (t, J = 6.3 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 2.96 (d, J = 5.3 Hz, 1H), 2.82 (d, J = 5.3 Hz, 1H), 2.41 (s, 3H), 1.60 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm 139.8, 135.1, 130.0, 127.5, 126.8, 125.8, 58.3, 54.7, 23.49, 19.1. HRMS(ESI+) *m/z* calculated for C₁₀H₁₂ONa [M+Na]⁺ 171.0780, found 171.0789. Chiral GC analysis with CYCLOSIL-B

S6, colorless oil; (82% yield, 84% ee); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 7.47 (dd, J = 7.4, 1.8 Hz, 1H), 7.32 (dd, J = 7.7, 1.2 Hz, 1H), 7.27 – 7.22 (m, 3H), 3.00 (d, J = 5.1 Hz, 1H), 2.83 (d, J = 5.1 Hz, 1H), 1.65 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ ppm 139.6, 132.2, 129.1, 128.6, 128.4, 126.9, 57.8, 55.1. HRMS(ESI+) m/z calculated for C₉H₉CIONa [M+Na]⁺ 191.0234, found

191.0223. HPLC-separation conditions: Chiralpack IB 25°C, 220nm, 98/2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(minor) = 4.5 min, r.t.(major) = 4.8 min

S7, yellow oil; (67% yield, 90% ee); ¹H-NMR (CDCl₃, 400 MHz, 300K) δ, ppm 7.55 – 7.52 (m, 1H), 7.51 – 7.47 (m, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 1H), 7.17 (ddd, J = 8.0, 7.4, 1.8 Hz, 1H), 3.04 (d, J = 5.1 Hz, 1H), 2.86 (d, J = 5.8 Hz, 1H), 1.68 (s, 4H).¹³C NMR (100 MHz, CDCl₃) δ ppm 141.3, 132.3, 129.1, 128.8, 127.5, 121.7, 59.2, 55.4, 22.7. HRMS(ESI+) *m*/*z* calculated for C₉H₉BrONa [M+Na]⁺ 234.9729, found 234.9731. Chiral GC analysis with astec CHIRALDEX G-TA

S8, colorless oil; (88% yield, 90% ee); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 7.38 (t, J = 7.5 Hz, 1H), 7.26 (m, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.04 – 7.00 (m, 1H), 2.99 (d, J = 5.2 Hz, 1H), 2.83 – 2.78 (d, J = 5.2 Hz, 1H), 2.08 (m, 1H), 1.79 (m, 1H), 0.94 – 0.86 (m, 3H).¹³C NMR (150 MHz, CDCl₃) δ ppm 161.1, 159.5, 129.3, 129.2, 128.9, 128.9, 127.4, 127.3, 123.9, 123.9, 115.3, 115.1, 58.9, 53.4, 29.1, 8.9. HRMS(ESI+) *m/z* calculated for C₁₀H₁₁OFNa [M+Na]⁺ 189.0686, found 189.0681. HPLC-separation conditions: Chiralpack AS-H 25°C, 254nm, 99.6/0.4 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 5.6 min, r.t.(minor) = 5.9 min

S9, colorless oil; (66% yield, 90% ee); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 7.31 (d, J = 7.2 Hz, 1H), 7.21 – 7.11 (m, 3H), 3.00 (d, J = 5.2 Hz, 1H), 2.78 (d, J = 5.2 Hz, 1H), 2.38 (s, 3H), 1.93 (m, 1H), 1.79 (m, 1H), 0.91 (t, J = 7.5 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ ppm 138.4, 135.3, 130.0, 128.0, 127.4, 125.4, 61.6, 53.1, 29.1, 19.1, 9.0. HRMS(ESI+) *m/z* calculated for C₁₁H₁₄ONa [M+Na]⁺ 185.0937, found 185.0933. HPLC-separation conditions: Chiralpack

OJ-H 25°C, 220nm, 99.8/0.2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 7.8 min, r.t.(minor) = 8.4 min

S10, colorless oil; (99% yield, 86% ee); ¹H-NMR (CDCl₃, 600 MHz, 300K) δ, ppm 8.23 (s, 1H), 8.13 (d, J = 9.4 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 3.04 (d, J = 5.1 Hz, 1H), 2.73 (d, J = 5.1 Hz, 1H), 2.27 (m, 1H), 1.83 (m, 1H), 0.94 (t, J = 7.5 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ ppm 148.4, 142.4, 132.0, 129.4, 122.5, 121.2, 60.2, 55.5, 27.7, 8.8. HRMS(ESI+) *m/z* calculated for C₁₀H₁₁NO₃FNa [M+Na]⁺ 216.0631, found 216.0632. HPLC-separation conditions: Chiralpack IC 25°C, 220nm, 99/1 hexane/*i*-PrOH, 1.0 mL/min; r.t.(minor) = 12.7 min, r.t.(major) = 13.2 min

S12, colorless oil; (70% yield, 91% ee); ¹H-NMR (CDCl₃, 400 MHz, 300K) δ, ppm 7.42 – 7.29 (m, 5H), 4.11 (d, J = 4.2 Hz, 1H), 3.24 – 3.16 (m, 1H), 1.55 – 1.39 (m, 1H), 1.34 – 1.20 (m, 1H), 0.93 (t, J = 7.5 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ ppm 135.7, 128.0, 127.4, 126.5, 60.6, 57.5, 20.2, 10.0.HRMS(ESI+) m/z calculated for C₁₀H₁₂ONa [M+Na]⁺ 171.0780, found 171.0784. Chiral GC analysis with CYCLOSIL-B

References

(1) Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. J. Am. Chem. Soc. **2013**, 135, 14871.

(2) Liang, Z.; Ju, L.; Xie, Y.; Huang, L.; Zhang, Y. *Chem. Eur. J.* **2012**, *18*, 15816.

(3) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. **2010**, 132, 16354.

(4) Pratsch, G.; Overman, L. E. J. Org. Chem. **2015**, *80*, 11388.

(5) Bertolotti, M.; Brenna, E.; Crotti, M.; Gatti, F. G.; Monti, D.; Parmeggiani, F.;

Santangelo, S. ChemCatChem. 2016, 8, 577.

(6) Kim, J.; Li, H. B.; Rosenthal, A. S.; Sang, D.; Shapiro, T. A.; Bachi, M. D.; Posner, G. H. *Tetrahedron* **2006**, *62*, 4120.

(7) Hornback, J. M.; Barrows, R. D. J. Org. Chem. **1982**, 47, 4285.

(8) van der Waals, D.; Pettman, A.; Williams, J. M. J. *RSC Adv.* **2014**, *4*, 51845.

- (9) Lichtor, P. A.; Miller, S. J. *Nat. Chem.* **2012**, *4*, 990.
- (10) Lichtor, P. A.; Miller, S. J. J. Am. Chem. Soc. 2014, 136, 5301.

A1) ¹H and ¹³C{¹H} NMR spectra of substrates

A2) 1H and 13C{1H} NMR spectra of isolated epoxides

SI.28

SI.32

A3) 1H NMR spectra of peptides

¹H-NMR of **peptide 7** in CDCl₃ and two drops of MeOD

¹H-NMR of non purified **peptides** in CDCI₃

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 ppm

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

A4) GC spectra of epoxides

Table 3 entry 3

A5) HPLC spectra of epoxides

HPLC-separation conditions: Chiralpack IC 25°C, 220 nm, 98/2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 5.7 min, r.t.(minor) = 6.1 min

Table 2 entry 1

HPLC-separation conditions: Chiralpack IC 25°C, 220 nm, 99.9/0.1 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 10.4 min, r.t.(minor) = 11.3 min

Table 2 entry 2

HPLC-separation conditions: Chiralpack OB-H 25°C, 220 nm, 99.9/0.1 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 8.7 min, r.t.(minor) = 10.2 min

Tab	le	2	entrv	3
iuo	· •	_		~

HPLC-separation conditions: Chiralpack OD-H 25°C, 254nm, 99.4/0.6 hexane/*i*-PrOH, 1.0 mL/min; r.t.(minor) = 5.0 min, r.t.(major) = 5.6 min

Table 3 entry 1

HPLC-separation conditions: Chiralpack IB 25°C, 220nm, 98/2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(minor) = 4.5 min, r.t.(major) = 4.8 min

Tab	le	3	entrv	2
iuo	· •	~		_

HPLC-separation conditions: Chiralpack AS-H 25°C, 254nm, 99.6/0.4 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 5.6 min, r.t.(minor) = 5.9 min

Table 3 entry 4

HPLC-separation conditions: Chiralpack OJ-H 25°C, 220nm, 99.8/0.2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 7.8 min, r.t.(minor) = 8.4 min

3	7.536	BV	0.1400	2886.33130	317.81555	48.9063
4	8.098	VB	0.1500	2955.83423	302.48767	50.0840
Table 3 entry 5						

HPLC-separation conditions: Chiralpack IC 25°C, 220nm, 99/1 hexane/*i*-PrOH, 1.0 mL/min; r.t.(minor) = 12.7 min, r.t.(major) = 13.2 min

Table 3 entry 6

HPLC-separation conditions: Chiralpack IC 25°C, 220nm, 98/2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(minor) = 4.9 min, r.t.(major) = 5.3 min

HPLC-separation conditions: Chiralpack IC 25°C, 220nm, 98/2 hexane/*i*-PrOH, 1.0 mL/min; r.t.(major) = 5.6 min, r.t.(minor) = 5.9 min

Table 3 entry 8

