Manganese-Catalyzed Allylation via Sequential C–H and C–C/C–Het Bond Activation

Qingquan Lu, Felix J. R. Klauck and Frank Glorius*
Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany

glorius@uni-muenster.de

Supporting Information
Table of Contents

General Information ... S3

Experimental Section .. S4

1) Optimization of the reaction conditions ... S4

2) Procedure and analytical data of compounds 3-5 S4

3) Gram-scale synthesis of 1a .. S20

4) Radical trapping experiments ... S20

5) H/D scrambling experiments ... S21

6) KIE experiments .. S24

7) Proposed mechanism ... S24

References .. S25

NMR Spectra of Products ... S26
General information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in oven-dried glassware cooled down under vacuum. Reaction temperatures are reported as the temperature of the heat transfer medium surrounding the vessel unless otherwise stated. Anhydrous solvents were purchased from ROTH and stored over molecular sieves under argon. Commercially available chemicals were obtained from Acros Organics, Aldrich Chemical Co., Alfa Aesar, ACR, TCI Europe and used as received unless otherwise stated. *N*-2-pyridylindoles,[1] *N*-2-pyrimidylindoles,[2] 2-arylpyridines,[3] 2-(prop-1-en-2-yl)pyridine,[4] dimethyl 2-vinylecyclopropane-1,1-dicarboxylate,[5] and meso-2,3-diazabicyclo[2.2.1]hept-5-ene-*N,N'*-diethyldicarboxylate[6] were prepared following literature procedures. Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm, 366 nm). Flash chromatography was performed on Merck silica gel (40-63 mesh) by standard techniques using appropriate mixtures of *n*-pentane and ethyl acetate. 1H and 13C NMR spectra were recorded on a Bruker AV 300 or AV 400, Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicated. Chemical shifts (δ) for 1H and 13C NMR spectra are given in ppm relative to TMS. The residual solvent signals were used as references for 1H and 13C NMR spectra and the chemical shifts converted to the TMS scale (TMS: δH = 0.00 ppm, CDCl$_3$: δH = 7.26 ppm, δC = 77.16 ppm; CD$_3$OD: δH = 3.31 ppm, δC = 49.00 ppm; DMSO-d_6: δH = 2.50 ppm;). Exact ESI mass spectra were recorded on a Bruker Daltonics MicroTof. Mass Calibration was carried out directly before the measurement of the sample using clusters of sodium formate. Infrared spectra were recorded neat on a Shimadzu FTIR-8400S. The wave numbers (υ) of recorded IR-signals are quoted in cm$^{-1}$.
Experimental section

1) Optimization of the reaction conditions.

Table S1 | Optimization of the reaction conditions.[a]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat. (10 mol%)</th>
<th>Additive (20 mol%)</th>
<th>Temp. / °C</th>
<th>Solvent</th>
<th>Yield of 3a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Mn₂(CO)₁₀]</td>
<td>-</td>
<td>80</td>
<td>Et₂O</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>[Mn₂(CO)₁₀]</td>
<td>-</td>
<td>80</td>
<td>THF</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>[Mn₂(CO)₁₀]</td>
<td>-</td>
<td>80</td>
<td>Hexane</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>[Mn₂(CO)₁₀]</td>
<td>-</td>
<td>80</td>
<td>DMF</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>[MnBr(CO)₅]</td>
<td>-</td>
<td>80</td>
<td>Et₂O</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>[MnBr(CO)₅]</td>
<td>Cy₂NH</td>
<td>80</td>
<td>Et₂O</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>[MnBr(CO)₅]</td>
<td>NaOAc</td>
<td>80</td>
<td>Et₂O</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>[MnBr(CO)₅]</td>
<td>NaOAc</td>
<td>80</td>
<td>DMF</td>
<td>55</td>
</tr>
<tr>
<td>9[b]</td>
<td>[MnBr(CO)₅]</td>
<td>NaOAc</td>
<td>90</td>
<td>Et₂O</td>
<td>90</td>
</tr>
<tr>
<td>10[b]</td>
<td>[MnBr(CO)₅]</td>
<td>NaOAc</td>
<td>90</td>
<td>neat</td>
<td>92</td>
</tr>
<tr>
<td>11[b]</td>
<td>[Mn₂(CO)₁₀]</td>
<td>NaOAc</td>
<td>90</td>
<td>neat</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>Cp*Mn(CO)₃</td>
<td>NaOAc</td>
<td>90</td>
<td>Et₂O</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Mn(OAc)₂·4H₂O</td>
<td>NaOAc</td>
<td>90</td>
<td>Et₂O</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>NaOAc</td>
<td>90</td>
<td>Et₂O</td>
<td>0</td>
</tr>
</tbody>
</table>

[a] Unless otherwise specified, all reactions were carried out using 1a (0.2 mmol), 2aa (0.3 mmol), catalyst precursor (10 mol%), additive (20 mol%) in solvent (1.0 mL) for 10 h, isolated yields. [b] 5 h.

2) Procedure and analytical data of compounds 3-5.

2.1) Procedure and analytical data of compounds 3.

General procedure: In a 10 mL dry Schlenk tube with a stirring bar, N-2-pyridylindole (1) (0.20 mmol), [MnBr(CO)₅] (10 mol%, 5.5 mg) and NaOAc (20 mol%, 3.3 mg) were added under air. Then the reaction vessel was evacuated and filled with argon for three times; Afterwards, vinyl-1,3-dioxolan-2-one (2aa) (0.30 mmol) and Et₂O (1 mL, anhydrous, no solvent was added under neat condition) were added under an argon atmosphere. The tube was sealed and the mixture was stirred at 90 °C for the determined time. Then, the volatiles were removed and the
analytically pure product was obtained by flash chromatography (silica; gradient of pentane/EtOAc).

(E/Z)-4-(1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol\(^7\)

Following the general procedure, product 3a was isolated in 89\% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.55 (ddd, \(J = 4.9, 1.9, 0.8\) Hz, 1H), 7.85 – 7.71 (m, 1H), 7.52 – 7.44 (m, 1H), 7.35 – 7.30 (m, 1H), 7.27 – 7.19 (m, 2H), 7.09 – 6.94 (m, 2H), 6.51 – 6.20 (m, 1H), 5.71 – 5.23 (m, 2H), 3.99 (d, \(J = 5.1\) Hz, 0.25 H), 3.86 (dd, \(J = 5.7, 1.1\) Hz, 1.75 H), 3.62 – 3.45 (m, 2H), 1.96 (br, 1H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) Major isomer: 151.40, 149.63, 139.04, 138.44, 137.42, 131.28, 128.65, 128.56, 122.25, 122.01, 121.24, 120.84, 120.19, 110.20, 103.29, 63.26, 30.72. Minor isomer: 151.34, 149.70, 139.34, 130.42, 128.40, 122.03, 120.89, 110.14, 103.02, 58.33, 26.22. Five peaks are missing probably due to overlap. HRMS: m/z (ESI) calcd for C\(_{17}\)H\(_{16}\)N\(_2\)NaO \([\text{M+Na}]^+\) 287,1160, found 287,1155.

(E/Z)-2-(4-hydroxybut-2-en-1-yl)-1-(pyridin-2-yl)-1H-indole-4-carbonitrile

Following the general procedure, product 3b was isolated in 75\% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.73 – 8.42 (m, 1H), 7.97 – 7.67 (m, 1H), 7.49 – 7.24 (m, 4H), 7.15 – 6.96 (m, 1H), 6.67 – 6.49 (m, 1H), 5.76 – 5.34 (m, 2H), 4.04 (d, \(J = 6.0\) Hz, 0.37 H), 3.95 (dd, \(J = 5.6, 1.3\) Hz, 1.63 H), 3.59 (d, \(J = 6.7\) Hz, 0.38 H), 3.54 (d, \(J = 6.5\) Hz, 1.63 H), 1.68 (br, 1H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) Major isomer: \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 150.36, 149.99, 142.40, 138.86, 137.17, 132.27, 130.14, 127.29, 125.89, 123.20, 121.68, 121.40, 118.83, 115.02, 102.36, 101.87, 63.17, 30.72. Minor isomer: \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 150.31, 150.07, 142.61, 138.98, 131.24, 125.93, 123.22, 121.72, 118.79, 114.93, 102.41, 101.63, 58.38, 26.25. Four peaks are missing probably due to overlap. HRMS: m/z (ESI) calcd for C\(_{18}\)H\(_{15}\)N\(_3\)NaO \([\text{M+Na}]^+\) 312,1113, found 312,1107.

(E/Z)-4-(6-fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol

Following the general procedure, product 3c was isolated in 91\% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.71 – 8.61 (ddd, \(J = 4.8, 2.0, 0.8\) Hz, 1H), 7.94 – 7.85 (m, 1H), 7.46 (dd, \(J = 8.6, 2.0\) Hz, 1H), 7.21 – 7.13 (m, 1H), 6.56 – 6.20 (m, 1H, 6.23 – 5.95 (m, 1H), 5.69 – 5.23 (m, 2H), 3.99 (d, \(J = 5.1\) Hz, 0.25 H), 3.86 (dd, \(J = 5.7, 1.1\) Hz, 1.75 H), 3.62 – 3.45 (m, 2H), 1.96 (br, 1H).
5.4 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.37 – 7.31 (m, 1H), 7.07 – 6.99 (m, 1H), 6.89 (ddd, J = 9.5, 8.6, 2.3 Hz, 1H), 6.44 – 6.38 (m, 1H), 5.79 – 5.44 (m, 2H), 4.10 (d, J = 5.4 Hz, 0.26H), 3.98 (dd, J = 5.7, 1.3 Hz, 1.74H), 3.62 (d, J = 5.9 Hz, 0.27H), 3.59 (d, J = 6.6 Hz, 1.74H), 1.85 (br, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) Major isomer: \(\delta = 159.98\) (d, J = 237.5 Hz), 151.09 , 149.74 , 139.43 (d, J = 3.8 Hz), 138.65 , 137.45 (d, J = 12.0 Hz), 131.44 , 128.38 , 124.90 , 122.54 , 121.01 , 120.77 (d, J = 9.9 Hz), 109.23 (d, J = 24.2 Hz), 103.14 , 97.19 (d, J = 27.2 Hz), 63.19 , 30.70; Minor isomer: \(\delta = 151.03, 149.83, 138.78, 130.57, 128.15, 124.89, 120.80\) (d, J = 9.9 Hz), 109.27 (d, J = 24.0 Hz), 102.85, 97.13 (d, J = 27.3 Hz), 58.31, 26.22. Two peaks are missing probably due to overlap, three peaks probably have too low intensities due to C-F coupling. \(^{19}\)F NMR (282 MHz, CDCl\(_3\)) Major isomer: \(\delta = -120.86\) (td, J = 9.8, 5.4 Hz); Minor isomer: \(\delta = -120.79\); HRMS m/z (ESI): calcd. for C\(_{17}\)H\(_{15}\)N\(_2\)OFNa 305.1061, found 305.1061; ATR-IR \(\nu\) (cm\(^{-1}\)) 3333, 3082, 3063, 3013, 2905, 2862, 2357, 1616, 1586, 1570, 1559, 1470, 1439, 1385, 1354, 1296, 1273, 1207, 1180, 1138, 1096, 1049, 972, 937, 833, 810, 779, 679, 656.

\(\text{(E/Z)-4-(5-Bromo-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol}\)

Following the general procedure, product 3d was isolated in 89% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = 8.54 – 8.59\) (m, 1H), 7.87 – 7.77 (m, 1H), 7.63 – 7.57 (m, 1H), 7.35 – 7.29 (m, 1H), 7.27 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H), 7.15 – 7.07 (m, 2H), 6.33 – 6.28 (m, 1H), 5.69 – 5.36 (m, 2H), 4.01 (d, J = 5.7 Hz, 0.33H), 3.90 (dd, J = 5.7, 1.3 Hz, 1.76H), 3.55 (d, J = 6.7 Hz, 0.34H), 3.52(d, J = 6.6 Hz, 1.76H), 1.56 (br, 1H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) Major isomer: \(\delta = 151.01, 149.80, 140.38, 138.62, 136.15, 131.61, 130.26, 128.21, 124.76, 122.69, 122.62, 121.17, 113.97, 111.75, 102.69, 63.28, 30.71\); Minor isomer: \(\delta = 150.95, 149.87, 140.66, 138.76, 130.69, 130.28, 128.06, 124.79, 122.72, 122.63, 121.19, 114.02, 111.68, 102.41, 58.40, 26.23. One peak is missing probably due to overlap. HRMS m/z (ESI): calcd. for C\(_{17}\)H\(_{15}\)N\(_2\)OBrNa 365.0260, found 365.0269; ATR-IR \(\nu\) (cm\(^{-1}\)) 3310, 3013, 2859, 1586, 1574, 1470, 1439, 1381, 1339, 1273, 1207, 1150, 1092, 1049, 972, 864, 779, 745, 733.

\(\text{(E/Z)-4-(5-iodo-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol}\)

Following the general procedure, product 3e was isolated in 91% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta = 8.60 – 8.48\) (m, 1H),
7.89 – 7.72 (m, 2H), 7.33 – 7.21 (m, 3H), 7.02 – 6.93 (m, 1H), 6.31 – 6.21 (m, 1H), 5.70 – 5.14 (m, 2H), 3.97 (d, J = 5.5 Hz, 0.3 H), 3.86 (dd, J = 5.6, 1.2 Hz, 1.7 H), 3.63 – 3.35 (m, 2H), 2.39 (br, 1H); ¹³C NMR (75 MHz, CDCl₃) Major isomer: δ 150.87, 149.73, 140.04, 138.65, 136.61, 131.63, 131.00, 130.24, 128.90, 128.01, 122.65, 121.20, 112.25, 102.35, 84.32, 63.13, 30.59; Minor isomer: ¹³C NMR (75 MHz, CDCl₃) δ 150.81, 149.81, 140.31, 138.78, 130.74, 130.27, 128.93, 127.84, 112.18, 102.07, 84.36, 58.28, 26.12. Four peaks are missing probably due to overlap. HRMS m/z (ESI): calcd. for C₁₇H₁₅N₂NaO 413.0127, found 413.0121.

(E/Z)-4-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol

Following the general procedure, product 3f was isolated in 97% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.58 – 8.49 (m, 1H), 7.82 – 7.77 (m, 1H), 7.52 – 7.42 (m, 1H), 7.36 – 7.28 (m, 1H), 7.27 – 7.18 (m, 2H), 7.12 – 7.01 (m, 2H), 5.65 – 5.15 (m, 2H), 3.88 (d, J = 5.7 Hz, 0.31H), 3.78 (dd, J = 5.8, 1.3 Hz, 1.68H), 3.60 (d, J = 5.9 Hz, 0.32H), 3.55 (dd, J = 6.1, 1.4 Hz, 1.69H), 2.25 (s, 0.47H), 2.23 (s, 2.48H), 1.45 (br, 1H); ¹³C NMR (75 MHz, CDCl₃) Major isomer: δ = 151.76, 149.56, 138.33, 136.65, 133.89, 130.24, 129.43, 129.05, 122.18, 121.93, 121.19, 120.38, 118.48, 110.82, 110.08, 63.28, 27.91, 8.89; Minor isomer: δ = 149.64, 138.50, 134.59, 129.48, 129.15, 122.21, 121.32, 120.46, 110.48, 109.98, 58.23, 23.93, 8.91. Five peaks are missing due to overlap. HRMS m/z (ESI): calcd. for C₁₈H₁₈N₂OH 279.1492, found 279.1494; ATR-IR ν (cm⁻¹) 3310, 3013, 2916, 2859, 1586, 1566, 1470, 1458, 1435, 1362, 1316, 1285, 1223, 1150, 1088, 995, 968, 779, 737.

(E/Z)-2-methyl-4-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-ol

Following the general procedure, 2-methyl-2-vinyloxirane (0.6 mmol) was used instead of 2aa, product 3g was isolated in 69% yield. ¹H NMR (300 MHz, CDCl₃) ¹H NMR δ 8.49 (t, J = 4.3 Hz, 1H), 7.77 – 7.65 (m, 1H), 7.49 – 7.38 (m, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.21 – 7.10 (m, 2H), 7.09 – 6.98 (m, 2H), 5.11 (t, J = 6.7 Hz, 0.5H), 5.02 (t, J = 6.9 Hz, 0.6H), 3.77 (s, 1.1H), 3.62 (s, 0.9H), 3.57 – 3.43 (m, 2H), 2.22 (s, 3H), 2.07 (s, 1H), 1.49 (s, 1.8H), 1.34 (s, 1.3H); ¹¹C NMR (75 MHz, CDCl₃) Major isomer: δ 151.73, 149.51, 138.41, 136.60, 135.27, 135.25, 129.48, 124.34, 122.02, 121.90, 121.38, 120.36, 118.34, 110.07, 109.93, 61.05, 23.87, 21.21, 8.87. Two peaks are missing due to overlap; Minor isomer: δ 149.58, 138.39, 136.70, 135.48, 129.42, 122.62, 121.97, 121.41,
Four peaks are missing due to overlap; HRMS: m/z (ESI) calefd for C_{18}H_{20}N_{2}NaO [M+Na]^+ 315,1473, found 315,1468.

Determination of structure was achieved with TOCSY and NOE-Experiments

\((E/Z)-2-\text{(4-hydroxybut-2-en-1-yl)-1-(pyridin-2-yl)-1H-indole-3-carbaldehyde}\)

Following the general procedure, product 3h was isolated in 93\% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.22 (s, 0.24 H), 10.19 (s, 0.78 H), 8.67 – 8.57 (m, 1H), 8.24 (dt, \(J = 6.8, 0.9\) Hz, 0.76H), 8.19 (dt, \(J = 6.8, 0.9\) Hz, 0.24 H), 7.95 – 7.82 (m, 1H), 7.42 – 7.32 (m, 2H), 7.26 – 7.06 (m, 3H), 5.61 – 5.41 (m, 1H), 5.38 – 5.20 (m, 1H), 3.94 – 3.85 (m, 1H), 3.85 – 3.73 (m, 3H), 2.08 (s, 1H); \(^1\)C NMR (101 MHz, CDCl\(_3\)) Major isomer: \(\delta\) 185.32, 150.14, 149.70, 148.83, 139.01, 137.24, 132.12, 126.93, 125.68, 124.14, 124.02, 123.64, 122.20, 121.34, 115.70, 110.61, 62.79, 27.73; Minor isomer: \(\delta\) 150.27, 149.65, 148.86, 139.14, 137.15, 130.74, 126.86, 126.06, 124.09, 122.26, 120.72, 115.30, 110.67, 58.09, 24.09. Three peaks are missing due to overlap. HRMS m/z (ESI): calced. for C_{18}H_{16}N_{2}NaO_{2} 315,1109, found 315,1104.

\((E/Z)-4-(2-(pyridin-2-yl)phenyl)but-2-en-1-ol\)^7

Following the general procedure, product 3i was isolated in 71\% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.64 – 8.47 (m, 1H), 7.73 – 7.58 (m, 1H), 7.36 – 7.10 (m, 6H), 5.66 – 5.55 (m, 0.9 H), 5.53 – 5.46 (m, 0.3 H), 5.38 – 5.29 (m, 0.9 H), 3.93 (d, \(J = 5.3\) Hz, 0.3 H), 3.87 (dd, \(J = 5.9, 1.3\) Hz, 1.8 H), 3.46 – 3.42 (m, 0.3 H), 3.38 (d, \(J = 6.6\) Hz, 1.8 H), 1.91 (br, 1H); \(^1\)C NMR (101 MHz, CDCl\(_3\)) Major isomer: \(\delta\) 159.93, 149.17, 140.43, 137.89, 136.37, 131.51, 130.29, 130.16, 129.96,
128.63, 126.47, 124.30, 121.94, 63.45, 36.08; Minor isomer: δ 160.07, 149.07, 140.17, 138.38, 136.65, 131.35, 130.09, 129.85, 129.20, 128.78, 126.40, 124.49, 121.98, 58.14, 31.22.

\((E/Z)\)-4-(5-methoxy-2-(pyridin-2-yl)phenyl)but-2-en-1-ol

Following the general procedure, product 3j was isolated in 81% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 8.65 – 8.50 (m, 1H), 7.70 – 7.57 (m, 1H), 7.29 – 7.04 (m, 3H), 6.82 – 6.69 (m, 2H), 5.68 – 5.55 (m, 0.87 H), 5.55 – 5.45 (m, 0.32 H), 5.43 – 5.26 (m, 0.85 H), 3.94 (d, \(J = 3.8\) Hz, 0.34 H), 3.88 (d, \(J = 5.2\) Hz, 1.73 H), 3.75 (s, 3H), 3.44 (d, \(J = 5.3\) Hz, 0.32 H), 3.38 (d, \(J = 6.5\) Hz, 1.69 H), 2.02 (br, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\))

Major isomer: δ 159.74, 159.64, 149.10, 139.53, 133.20, 133.20, 131.30, 131.25, 130.47, 124.32, 121.58, 115.76, 111.56, 63.40, 55.39, 36.28; Minor isomer: δ \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ 159.85, 159.80, 148.99, 140.02, 136.60, 131.43, 131.15, 129.43, 124.51, 121.61, 115.42, 111.56, 58.08, 31.37. Two peaks are missing due to overlap. HRMS m/z (ESI): calcd. for C\(_{16}\)H\(_{17}\)NNaO\(_2\) 278,1157, found 278,1151.

\((E/Z)\)-4-(2-(pyridin-2-yl)thiophen-3-yl)but-2-en-1-ol

Following the general procedure, product 3k was isolated in 70% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 8.71 – 8.29 (m, 1H), 7.68 – 7.56 m, 7.49 – 7.37 (m, 1H), 7.27 – 7.20 (m, 1H), 7.15 – 6.99 (m, 1H), 6.92 (d, \(J = 5.1\) Hz, 0.18 H), 6.88 (d, \(J = 5.1\) Hz, 0.82 H), 5.91 – 5.76 (m, 0.83 H), 5.71 – 5.65 (m, 0.34 H), 5.65 – 5.51 (m, 0.83 H), 4.18 (d, \(J = 5.3\) Hz, 0.36 H), 4.09 – 3.95 (m, 1.70 H), 3.67 (d, \(J = 5.6\) Hz, 0.37 H), 3.63 – 3.50 (m, 1.71 H), 1.70 (br, 1H); \(^{13}\)C NMR (75 MHz, CDCl\(_3\))

Major isomer: δ 153.20, 149.72, 138.51, 137.54, 136.66, 131.02, 130.66, 130.48, 126.00, 122.01, 121.72, 63.49, 32.34; Minor isomer: δ \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ 153.34, 149.54, 138.43, 136.90, 130.87, 130.64, 129.37, 125.91, 122.82, 121.82, 58.20, 27.81. One peak is missing due to overlap.

\((E/Z)\)-4-(1-(pyrimidin-2-yl)-1H-indol-2-yl)but-2-en-1-ol

Following the general procedure, product 31 was isolated in 79% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 8.68 (d, \(J = 4.8\) Hz, 2H), 8.21 – 8.09 (m, 1H), 7.50 – 7.39 (m, 1H), 7.19 – 7.06 (m, 2H), 7.04 (t, \(J\)
= 4.8 Hz, 1H), 6.44 – 6.34 (m, 1H), 5.84 – 5.48 (m, 2H), 4.15 (d, J = 5.3 Hz, 0.39 H), 3.93 (dd, J = 5.7, 0.87 Hz, 1.69 H), 3.90 – 3.81 (m, 2.08 Hz), 1.48 (br, 1H); 13C NMR (75 MHz, CDCl3) Major isomer: δ 158.25, 139.73, 137.13, 131.12, 129.61, 129.25, 122.84, 121.96, 119.95, 117.27, 113.81, 106.56, 63.47, 32.57. Two peaks are missing due to overlap. Minor isomer: δ 158.20, 139.79, 137.16, 130.29, 129.18, 122.89, 122.02, 117.23, 113.97, 106.40, 58.67, 28.23; Four peaks are missing due to overlap.

2-(E/Z)-5-(Z)-6-(pyridin-2-yl)hepta-2,5-dien-1-ol

Following the general procedure, product 3m was isolated in 75% yield. 1H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 3.9 Hz, 1H), 7.66 – 7.52 (m, 1H), 7.18 – 6.98 (m, 2H), 5.74 – 5.43 (m, 3H), 4.13 – 3.90 (m, 2H), 2.81 (t, J = 7.5 Hz, 0.34H), 2.74 (t, J = 3.94 Hz, 1.66H), 2.38 (br, 1H), 2.05 (s, 2.35H), 2.02 (s, 0.48H); 13C NMR (101 MHz, CDCl3) Major isomer: δ 159.69, 149.26, 136.82, 136.16, 130.97, 129.78, 127.27, 123.13, 121.76, 63.53, 31.91, 23.90; Minor isomer: δ 13NMR (101 MHz, CDCl3) δ 159.74, 149.00, 136.50, 135.58, 130.63, 129.21, 127.92, 121.88, 57.75, 27.80, 24.09. One peak is missing due to overlap. HRMS m/z (ESI): calcd. for C13H15NNaO 212,1051, found 212,1046.

Determination of structure was achieved with TOCSY and NOE-Experiments

(E/Z)-4-(3-(pyridin-2-yl)thiophen-2-yl)but-2-en-1-ol

Following the general procedure, product 3n was isolated in 65% yield.

1H NMR (300 MHz, CDCl3) δ = 8.58 (d, J = 4.0 Hz, 1H), 7.70 – 7.57
(m, 1H), 7.42 – 7.33 (m, 1H), 7.21 (t, J = 5.8 Hz, 1H), 7.16 – 7.08 (m, 2H), 5.90 – 5.59 (m, 2H), 4.16 (s, 0.31H), 4.02 (s, 1.69H), 3.87 (d, J = 6.1 Hz, 0.30H), 3.79 (d, J = 6.2 Hz, 1.69H), 1.59 (s, 1H); 13C NMR (101 MHz, CDCl$_3$) Major isomer: δ = 155.15, 149.53, 141.28, 137.39, 136.52, 131.06, 130.65, 128.88, 122.89, 122.80, 121.53, 63.42, 31.79; Minor isomer: δ = 155.20, 149.32, 141.95, 136.79, 130.97, 129.90, 128.76, 123.20, 122.85, 121.63, 58.12, 27.21; HRMS m/z (ESI): calcd. for C$_{13}$H$_{13}$NOSNa 254.0610, found 254.0613; ATR-IR ν (cm$^{-1}$) 3275, 3063, 3013, 2893, 2855, 1586, 1566, 1535, 1466, 1439, 1420, 1373, 1339, 1277, 1231, 1150, 1092, 991, 968, 945, 856, 791, 718, 679, 648.

2.2) Procedure and analytical data of compounds 4.

General procedure: In a 10 mL dry Schlenk tube with a stirring bar, N-2-pyridylindole (1) (0.20 mmol), [Mn$_2$(CO)$_{10}$] (10 mol%, 7.8 mg) were added under air. Then the reaction vessel was evacuated and filled with argon for three times; Afterwards, 2-vinylcyclopropane-1,1-dicarboxylate (2b) (0.30 mmol) and DMF (0.2 mL, anhydrous, no solvent was added under neat condition) were added under an argon atmosphere. The tube was sealed and the mixture was stirred at 90 °C for the determined time. Then, the volatiles were removed and the analytically pure product was obtained by flash chromatography (silica; gradient of pentane/EtOAc).

(E/Z)-dimethyl 2-(4-(1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate8

Following the general procedure, [MnBr(CO)$_5$] (10 mol%) and NaOAc (20 mol%) were used to replace Mn$_2$(CO)$_{10}$, product 4a was isolated in 75% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.69 – 8.43 (m, 1H), 7.85 – 7.73 (m, 1H), 7.53 – 7.46 (m, 1H), 7.37 (d, J = 8.0 Hz, 0.35 H), 7.34 (d, J = 8.0 Hz, 0.73 H), 7.28 – 7.20 (m, 2H), 7.11 – 7.00 (m, 2H), 6.35 (s, 0.25 H), 6.33 (s, 0.66 H), 5.62 – 5.49 (m, 1H), 5.38 – 5.20 (m, 1H), 3.62 (s, 6H), 3.57 (d, J = 7.3 Hz, 0.62 H), 3.48 (d, J = 6.7 Hz, 1.4 H), 3.32 – 3.22 (m, 1H), 2.54 (t, J = 8.0 Hz, 0.55 H), 2.46 (t, J = 7.7 Hz, 1.42 H); 13C NMR (101 MHz, CDCl$_3$) Major isomer: δ 169.37, 151.42, 149.64, 139.39, 138.35, 137.37, 129.86, 128.61, 127.75, 122.12, 121.92, 121.12, 120.78, 120.14, 110.20, 103.08, 52.60, 51.75, 31.79, 31.06. Two peaks are missing due to overlap. Minor isomer: δ 169.39, 149.79, 139.43, 138.45, 137.42, 129.08, 126.49, 122.14, 102.91, 52.66, 51.63.
Nine peaks are missing due to overlap.

(E/Z)-dimethyl 2-(4-(6-fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate

Following the general procedure, product 4b was isolated in 87% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.70 – 8.60 (m, 1H), 7.96 – 7.83 (m, 1H), 7.50 – 7.29 (m, 3H), 7.04 (dd, \(J = 10.1, 2.3\) Hz, 1H), 6.88 (td, \(J = 9.1, 2.4\) Hz, 1H), 6.39 (s, 0.31H), 6.37 (s, 0.66H), 5.67 – 5.54 (m, 1H), 5.46 – 5.27 (m, 1H), 3.70 (s, 6H), 3.61 (d, \(J = 7.3\) Hz, 0.67H), 3.52 (d, \(J = 6.6\) Hz, 1.45H), 3.40 – 3.28 (m, 1H), 2.60 (t, \(J = 7.6\) Hz, 0.61H), 2.54 (t, \(J = 7.3\) Hz, 1.39H). \(^13\)C NMR (101 MHz, CDCl\(_3\)) Major isomer \(\delta\) 169.35, 159.96 (d, \(J = 237.2\) Hz), 151.11, 149.77, 139.76 (d, \(J = 3.9\) Hz), 138.57, 137.38 (d, \(J = 12.2\) Hz), 129.67, 127.93, 124.95, 122.42, 120.89, 120.70 (d, \(J = 9.9\) Hz), 109.18 (d, \(J = 24.2\) Hz), 102.94, 97.20 (d, \(J = 27.1\) Hz), 52.63, 51.73, 31.77, 31.06 Two peaks are missing due to overlap. Minor isomer \(\delta\) 169.38, 149.91, 139.80 (d, \(J = 4.2\) Hz), 138.68, 137.44 (d, \(J = 12.2\) Hz), 128.87, 126.67, 122.45, 120.90, 102.74, 52.69, 51.59, 26.79, 26.05. Eight Peaks are missing due to C-F coupling and overlap; \(^{19}\)F NMR (282 MHz, CDCl\(_3\)) Major isomer: \(\delta\) -121.01 (td, \(J = 9.8, 5.6\) Hz); Minor isomer: \(\delta\) -121.02; HRMS m/z (ESI): calcd. for C\(_{22}\)H\(_{21}\)N\(_2\)O\(_4\)FNa 419.1378, found 419.1375; ATR-IR \(\nu\) (cm\(^{-1}\)) 3005, 2955, 1748, 1732, 1620, 1559, 1470, 1435, 1385, 1350, 1273, 1231, 1204, 1150, 1107, 1049, 1018, 980, 833, 810, 779, 748.

(E/Z)-dimethyl 2-(4-(5-bromo-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate

Following the general procedure, product 4c was isolated in 63% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.69 – 8.59 (m, 1H), 7.95 – 7.85 (m, 1H), 7.67 (t, \(J = 1.2\) Hz, 1H), 7.42 – 7.31 (m, 2H), 7.19 (d, \(J = 1.3\) Hz, 2H), 6.36 (s, 0.26H), 6.34 (s, 0.69H), 5.68 – 5.55 (m, 1H), 5.46 – 5.27 (m, 1H), 3.70 (s, 4.07 H), 2.61 (td, \(J = 7.6, 1.5\) Hz, 0.59H), 2.54 (td, \(J = 7.4, 1.2\) Hz, 1.48H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) Major isomer 169.34, 150.98, 149.78, 140.73, 138.56, 136.09, 130.29, 129.41, 128.15, 124.66, 122.62, 122.52, 121.09, 113.92, 111.75, 102.45, 52.65, 51.70, 31.77, 31.02 Two peaks are missing due to overlap. Minor isomer \(\delta\) 169.37, 149.92, 140.78, 138.66, 136.15, 130.31, 128.60, 126.88, 122.54,
121.10, 111.73, 102.27, 52.71, 51.55, 26.80, 26.01. Six Peaks are missing due to overlap. HRMS m/z (ESI): calcd. for C_{22}H_{21}N_{2}O_{4}BrNa 479.0577, found 479.0576; ATR-IR ν (cm⁻¹) 3005, 2951, 1748, 1732, 1385, 1339, 1273, 1231, 1204, 1150, 1049, 1015, 972, 864, 783, 733.

(E/Z)-dimethyl 2-(4-(5-iodo-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate[8]

![Diagram](image)

Following the general procedure, product 4d was isolated in 52% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 – 8.54 (m, 1H), 7.88 – 7.77 (m, 2H), 7.34 – 7.25 (m, 3H), 7.02 (d, J = 8.6 Hz, 1H), 6.27 (s, 0.27H), 6.25 (s, 0.58H), 5.63 – 5.46 (m, 1H), 5.41 – 5.19 (m, 1H), 3.63 (s, 4.23H), 3.62 (s, 1.71H), 3.54 (d, J = 7.3 Hz, 0.63H), 3.45 (d, J = 6.4 Hz, 1.30H), 3.33 – 3.23 (m, 1H), 2.53 (t, J = 7.5 Hz, 0.59H), 2.47 (t, J = 7.2 Hz, 1.34H); ¹³C NMR (101 MHz, CDCl₃) Major isomer δ 169.33, 150.93, 149.78, 140.38, 138.55, 136.58, 131.08, 130.20, 129.41, 128.89, 128.14, 122.52, 121.09, 112.26, 102.16, 84.27, 52.65, 51.70, 31.77, 30.95. Two peaks are missing due to overlap. Minor isomer δ 169.36, 149.92, 140.44, 138.65, 136.64, 128.61, 126.88, 122.54, 112.24, 101.98, 52.71, 51.55, 26.79, 25.95. Eight Peaks are missing due to overlap; HRMS m/z (ESI): calcd. for C_{22}H_{21}INaO_{4} 527.0444, found 527.0438.

(E/Z)-dimethyl 2-(4-(5-methoxy-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate[8]

Following the general procedure, product 4e was isolated in 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.48 (m, 1H), 7.86 – 7.70 (m, 1H), 7.34 (d, J = 8.0 Hz, 0.27H), 7.30 (d, J = 8.0 Hz, 0.77H), 7.23 – 7.13 (m, 2H), 6.95 (d, J = 2.4 Hz, 1H), 6.69 (dd, J = 8.9, 2.5 Hz, 1H), 6.28 (s, 0.25H), 6.25 (s, 0.70H), 5.60 – 5.46 (m, 1H), 5.36 – 5.20 (m, 1H), 3.76 (s, 3H), 3.62 (s, 6H), 3.56 (d, J = 7.3 Hz, 0.57H), 3.47 (d, J = 6.6 Hz, 1.46H), 3.22 – 3.21 (m, 1H), 2.55 (t, J = 7.2 Hz, 0.53H), 2.46 (t, J = 7.2 Hz, 1.43H); ¹³C NMR (101 MHz, CDCl₃) Major isomer δ 169.34, 154.86, 151.48, 149.54, 139.89, 138.31, 132.43, 129.88, 129.14, 127.67, 121.88, 120.75, 111.40, 111.01, 102.98, 102.30, 55.90, 52.58, 51.72, 31.76, 31.13. Two peaks are missing due to overlap. Minor isomer δ 169.36, 149.68, 139.95, 138.41, 132.47, 129.10, 126.39, 121.90, 110.99, 102.80, 52.64, 51.59, 26.76, 26.13. Nine
peaks are missing due to overlap.

(E/Z)-dimethyl 2-(4-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate

Following the general procedure, [MnBr(CO)]$_5$ (10 mol%) and NaOAc (20 mol%) were used to replace Mn$_2$(CO)$_{10}$. Product 4f was isolated in 89% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.58 – 8.49 (m, 1H), 7.81 – 7.72 (m, 1H), 7.49 – 7.42 (m, 1H), 7.30 (t, $J = 8.3$ Hz, 1H), 7.28 – 7.15 (m, 2H), 7.10 – 7.01 (m, 2H), 5.46 – 5.35 (m, 0.64H), 5.33 – 5.22 (m, 0.37H), 5.14 – 4.98 (m, 1H), 3.66 – 3.60 (m, 2.91H), 3.56 (s, 3.83H), 3.50 (d, $J = 5.9$ Hz, 1.32H), 3.22 – 3.10 (m, 1H), 2.43 (t, $J = 7.4$ Hz, 0.72H), 2.35 (t, $J = 7.3$ Hz, 1.32H), 2.25 (s, 1.08H), 2.20 (s, 2.20H); 13C NMR (101 MHz, CDCl$_3$) Major isomer δ 169.30, 151.70, 149.51, 138.21, 136.54, 133.94, 130.27, 129.42, 126.46, 122.05, 121.77, 121.03, 120.28, 118.35, 110.69, 110.12, 52.50, 51.76, 31.71, 28.19, 8.77. Two peaks are missing due to overlap. Minor isomer δ 169.36, 149.74, 138.32, 136.58, 134.76, 129.86, 129.47, 125.14, 122.06, 121.08, 120.32, 118.38, 110.37, 109.94, 52.62, 51.46, 26.74, 23.65, 8.87. Four peaks are missing due to overlap.

(E/Z)-diethyl 2-(4-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)but-2-en-1-yl)malonate

Following the general procedure, [MnBr(CO)]$_5$ (10 mol%) and NaOAc (20 mol%) were used to replace Mn$_2$(CO)$_{10}$. Product 4g was isolated in 95% yield using diethyl 2-vinylcyclopropane-1,1-dicarboxylate (2bb) as the starting material. 1H NMR (300 MHz, CDCl$_3$) δ 8.58 – 8.50 (m, 1H), 7.81 – 7.71 (m, 1H), 7.51 – 7.42 (m, 1H), 7.36 – 7.14 (m, 3H), 7.09 – 7.00 (m, 2H), 5.48 – 5.34 (m, 0.7H), 5.32 – 5.20 (m, 0.3H), 5.17 – 4.97 (m, 1H), 4.18 – 3.93 (m, 4H), 3.63 (d, $J = 6.7$ Hz, 0.6H), 3.49 (d, $J = 5.8$ Hz, 1.3H), 3.19 – 3.06 (m, 1H), 2.43 (t, $J = 7.4$ Hz, 0.7H), 2.35 (t, $J = 7.3$ Hz, 1.4H), 2.25 (s, 1H), 2.20 (s, 2H), 1.17 (t, $J = 7.1$ Hz, 2H), 1.10 (t, $J = 7.1$ Hz, 4.2H); 13C NMR (75 MHz, CDCl$_3$) Major isomer: δ 168.93, 151.68, 149.48, 138.21, 136.51, 133.94, 130.05, 129.40, 126.65, 122.01, 121.76, 121.04, 120.25, 118.32, 110.64, 110.09, 61.38, 52.05, 31.63, 28.17, 14.09, 8.77. Two peaks are missing due to overlap; Minor isomer: δ 169.00, 149.71, 138.31, 136.55, 134.81, 129.63, 129.45, 125.34, 121.07, 120.29, 118.36, 110.33, 109.93, 61.50, 51.78, 26.66, 23.66, 14.17, 8.87; Five peaks are missing due to overlap; HRMS: m/z (ESI)
calcd for \(\text{C}_{25}\text{H}_{28}\text{N}_{2}\text{O}_{4} \) [M+Na]+ 443.1947, found 443.1941.

(E/Z)-dimethyl 2-(4-(2-(pyridin-2-yl)phenyl)but-2-en-1-yl)malonate

Following the general procedure, \([\text{MnBr(CO)}_5] (10 \text{ mol\%})\) and \(\text{NaOAc} (20 \text{ mol\%})\) were used to replace \(\text{Mn}_2(\text{CO})_{10}\), product \(4h\) was isolated in 57% yield. \(^1\text{H NMR (300 MHz, CDCl}_3\) \(\delta 8.67 – 8.55 (m, 1H), 7.73 – 7.62 (m, 1H), 7.33 – 7.14 (m, 6H), 5.58 – 5.41 (m, 1H), 5.29 – 5.10 (m, 1H), 3.64 (s, 1.68H), 3.61 (s, 4.27H), 3.45 (d, \(J = 7.3 \text{ Hz}, 0.56H\)), 3.34 (d, \(J = 6.5 \text{ Hz}, 1.48H\)), 3.31 – 3.22 (m, 1H), 2.56 – 2.41 (m, 2H); \(^{13}\text{C NMR (75 MHz, CDCl}_3\)

Major isomer \(\delta 169.43, 160.01, 149.31, 140.41, 138.03, 136.27, 129.95, 129.91, 128.51, 126.57, 126.37, 124.27, 121.84, 52.64, 51.67, 36.23, 31.90\). Two peaks are missing due to overlap.

Minor isomer \(\delta 160.01, 149.31, 138.42, 136.41, 131.93, 129.97, 129.77, 128.65, 126.33, 125.10, 124.31, 52.64, 51.67, 31.09, 26.79\). Five Peaks are missing due to overlap; HRMS m/z (ESI): calcd. for \(\text{C}_{20}\text{H}_{21}\text{NNaO}_4\) 362,1368, found 362,1363.

(E/Z)-dimethyl 2-(4-(5-methoxy-2-(pyridin-2-yl)phenyl)but-2-en-1-yl)malonate

Following the general procedure, product \(4i\) was isolated in 50% yield. \(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta 8.62 – 8.53 (m, 1H), 7.70 – 7.57 (m, 1H), 7.32 – 7.21 (m, 2H), 7.14 (ddd, \(J = 7.5, 4.9, 1.1 \text{ Hz}, 1H\)), 6.82 – 6.64 (m, 2H), 5.60 – 5.47 (m, 1H), 5.31 – 5.14 (m, 1H), 3.77 (s, 3H), 3.64 (s, 1.07H), 3.61 (s, 4.92H), 3.46 (d, \(J = 7.9 \text{ Hz}, 0.34H\)), 3.35 (d, \(J = 6.6 \text{ Hz}, 1.62H\)), 3.32 – 3.23 (m, 1H), 2.57 – 2.40 (m, 2H); \(^{13}\text{C NMR (101 MHz, CDCl}_3\)

Major isomer \(\delta 169.43, 159.74, 159.67, 149.19, 139.69, 136.20, 132.20, 131.25, 126.78, 124.28, 121.47, 115.47, 111.63, 55.40, 52.56, 51.89, 36.44, 31.90\). Two peaks are missing due to overlap. Minor isomer \(\delta \) \(^{13}\text{C NMR (75 MHz, CDCl}_3\) \(\delta 159.83, 149.25, 140.06, 136.34, 131.81, 131.31, 125.31, 124.32, 115.32, 111.58, 52.63, 51.67, 31.30, 26.81\). Seven peaks are missing due to overlap; HRMS m/z (ESI): calcd. for \(\text{C}_{21}\text{H}_{24}\text{NO}_5\) 370,1654, found 370,1649.

(E/Z)-Dimethyl-2-(4-(4-(pyridin-2-yl)thiophen-3-yl)but-2-en-1-yl)malonate

Following the general procedure, product \(4j\) was isolated in 53% yield. \(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta 8.62 – 8.53 (m, 1H), 7.68 – 7.59 (m, 1H), 7.40 – 7.32 (m, 1H), 7.24 – 7.20 (m, 1H), 7.14 – 7.05\)
(m, 2H), 5.76 – 5.61 (m, 1H), 5.51 – 5.28 (m, 1H), 3.87 (dd, J = 7.3, 1.6 Hz, 0.50H), 3.74 (dd, J = 6.6, 1.4 Hz, 1.49H), 3.66 (s, 1.43H), 3.64 (s, 4.56H), 3.40 – 3.31 (t, J = 7.6 Hz, 1H), 2.68 (td, J = 7.6, 1.6 Hz, 0.50H), 2.55 (m, 1.50H); \(^{13}C\) NMR (101 MHz, CDCl\(_3\)) \(\delta = 169.41, 155.14, 149.54, 141.68, 137.25, 136.44, 131.91, 128.84, 127.56, 122.84, 122.72, 121.45, 52.65, 51.81, 32.21, 31.81\) Two peaks are missing due to overlap, \(\delta = 169.44, 155.23, 141.98, 137.06, 136.50, 131.14, 128.82, 126.12, 122.57, 121.44, 52.70, 51.69, 27.17, 26.90\) Four peaks are missing due to overlap; HRMS m/z (ESI): calcd. for C\(_{18}\)H\(_{19}\)NO\(_4\)SNa 368.0927, found 368.0929; ATR-IR \(\nu (\text{cm}^{-1}) 3005, 2951, 1748, 1732, 1586, 1566, 1532, 1474, 1435, 1339, 1269, 1235, 1200, 1150, 1022, 972, 856, 791, 745, 718, 702.\)

2.3) Procedure and analytical data of compounds 5.

General procedure: In a 10 mL dry Schlenk tube with a stirring bar, \(N\)-2-pyridylindole (1) (0.20 mmol), [MnBr(CO)]\(_5\) (10 mol%, 5.5 mg) and NaOAc (20 mol%, 3.3 mg) were added under air. Then the reaction vessel was evacuated and filled with argon for three times; Afterwards, diazabicycle (2ca) (0.30 mmol) and Et\(_2\)O (1 mL, anhydrous, no solvent was added under neat condition) were added under an argon atmosphere. The tube was sealed and the mixture was stirred at 90 °C for the determined time. Then, the volatiles were removed and the analytically pure product was obtained by flash chromatography (silica; gradient of pentane/EtOAc).

\[\text{diethyl 1-(2-(1-(pyridin-2-yl)-1H-indol-2-yl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate}\]

Following the general procedure, product 5a was isolated in 83% yield. \(^1H\) NMR (400 MHz, CD\(_2\)OD) \(\delta = 8.61 (d, J = 3.9\ Hz, 1H), 8.02 (td, J = 7.8, 1.9 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.45 (dd, J = 7.5, 5.0 Hz, 1H), 7.20 – 7.13 (m, 1H), 7.11 – 7.03 (m, 2H), 6.51 (s, 1H), 5.80 – 5.68 (m, 1H), 5.59 (s, 1H), 5.12 (s, 1H), 4.45 – 4.27 (m, 1H), 4.21 – 3.86 (m, 4H), 2.66 (dd, J = 17.2, 8.4 Hz, 1H), 2.57 – 2.36 (m, 1H), 1.39 – 0.96 (m, 6H); \(^{13}C\) NMR (101 MHz, CD\(_2\)OD) \(\delta = 157.53, 155.93, 150.98, 149.13, 141.82, 139.23, 137.91, 130.94, 129.06, 128.39, 122.82, 122.57, 121.67, 120.37, 119.81, 109.58, 101.28, 64.89, 62.11, 61.39, 46.10, 34.60, 13.49, 13.38; HRMS: m/z (ESI) calcd. for C\(_{26}\)H\(_{26}\)N\(_2\)Na\(_4\)O\(_4\) [M+Na]\(^+\) 457.1852, found 457.1846. ATR-IR \(\nu (\text{cm}^{-1}) 3279, 2982, 2931, 1748, 1701, 1589, 1469, 1454, 1435, 1142, 1230, 1211, 1126, 1057, 953, 926, 787, 741, 702.3005.\)
di-tert-butyl 1-((2-(1-(pyridin-2-yl)-1H-indol-2-yl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate

Following the general procedure, product 5b was isolated in 70% yield using di-tert-butyl 2,3-diazabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (2cb) as the starting material. ¹H NMR (600 MHz, CD₂OD) δ 8.62 (d, J = 5.0 Hz, 1H), 8.01 (s, 1H), 7.65 – 7.40 (m, 3H), 7.21 – 7.12 (m, 1H), 7.12 – 6.98 (m, 2H), 6.54 (s, 1H), 5.69 (s, 1H), 5.52 (s, 1H), 5.15 (s, 1H), 4.29 (s, 1H), 2.67 – 2.45 (m, 2H), 1.65 – 1.05 (m, 18H); ¹³C NMR (126 MHz, CD₂OD) δ 157.79, 156.45, 152.42, 150.57, 150.46, 140.60, 139.32, 132.49, 130.21, 129.84, 124.23, 123.96, 122.95, 121.72, 121.11, 110.94, 102.65, 82.15, 81.63, 64.05, 47.25, 35.76, 28.61, 28.50; HRMS: m/z (ESI) calcd for C₂₈H₃₄N₄NaO₄ [M+Na]⁺ 513.2478, found 513.2472.

diethyl 1-((2-(5-methoxy-1-(pyridin-2-yl)-1H-indol-2-yl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate

Following the general procedure, product 5c was isolated in 94% yield. ¹H NMR (400 MHz, CD₂OD) δ 8.59 (d, J = 3.8 Hz, 1H), 8.09 – 7.92 (m, 1H), 7.52 (s, d, J = 7.9 Hz, 1H), 7.43 (dd, J = 7.1, 5.2 Hz, 1H), 7.09 (d, J = 8.9 Hz, 1H), 7.04 (d, J = 2.3 Hz, 1H), 6.73 (dd, J = 8.9, 2.4 Hz, 1H), 6.44 (s, 1H), 5.77 – 5.68 (m, 1H), 5.59 (s, 1H), 5.10 (s, 1H), 4.45 – 4.27 (m, 1H), 4.16 – 3.94 (m, 4H), 3.79 (s, 3H), 2.74 – 2.57 (m, 1H), 2.55 – 2.43 (m, 1H), 1.26 – 1.05 (m, 6H); ¹³C NMR (101 MHz, CD₂OD) δ 158.80, 157.30, 156.29, 152.47, 150.41, 143.81, 140.56, 134.35, 132.36, 130.37, 130.12, 123.96, 123.60, 112.64, 111.72, 103.33, 102.67, 66.21, 63.47, 62.76, 56.13, 47.52, 36.03, 14.85, 14.74; HRMS: m/z (ESI) calcd for C₂₅H₂₃N₂NaO₅ [M+Na]⁺ 487,1957, found 487,1952.

diethyl 1-((2-(6-fluoro-1-(pyridin-2-yl)-1H-indol-2-yl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate

Following the general procedure, product 5d was isolated in 81% yield. ¹H NMR (400 MHz, CD₂OD) δ 8.63 (d, J = 3.7 Hz,
1H), 8.05 (t, $J = 7.6$ Hz, 1H), 7.56 (d, $J = 7.9$ Hz, 1H), 7.52 – 7.42 (m, 2H), 6.94 – 6.82 (m, 2H), 6.50 (s, 1H), 5.72 (dd, $J = 5.7$, 2.2 Hz, 1H), 5.58 (s, 1H), 5.10 (s, 1H), 4.32 (s, 1H), 4.18 – 3.95 (m, 4H), 2.78 – 2.57 (m, 1H), 2.56 – 2.38 (m, 1H), 1.30 – 1.12 (m, 6H); 13C NMR (101 MHz, CD$_3$OD) δ 161.21 (d, $J = 237.5$ Hz), 158.87, 157.28, 152.01, 150.66, 143.96, 140.77, 139.31, 139.19, 132.36, 130.57, 126.22, 124.47, 123.75, 122.03 (d, $J = 9.7$ Hz), 109.89 (d, $J = 24.3$ Hz), 102.59, 97.63 (d, $J = 27.4$ Hz), 66.52, 63.53, 62.76, 47.58, 35.96, 14.84, 14.74; 19F NMR (564 MHz, CDCl$_3$) δ -122.62.

diethyl 1-(2-(3-methyl-1-(pyridin-2-yl)-1H-indol-2-yl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate

Following the general procedure, [MnBr(CO)$_5$] (20 mol%) and NaOAc (40 mol%) were used under neat condition at 100 °C for 37 h, product 5e was isolated in 94% yield. 1H NMR (400 MHz, CD$_3$OD) δ 8.58 (s, 1H), 7.97 (td, $J = 7.8$, 1.8 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.48 – 7.38 (m, 2H), 7.13 – 7.00 (m, 3H), 5.71 – 5.51 (m, 2H), 5.33 (br, 1H), 4.34 (s, 1H), 4.20 – 3.88 (m, 4H), 2.71 – 2.47 (m, 2H), 2.34 (s, 3H), 1.30 – 0.88 (m, 6H); 13C NMR (126 MHz, CD$_3$OD) δ 158.64, 157.60, 153.05, 150.26, 140.20, 138.63, 137.56, 132.40, 131.06, 129.81, 124.52, 124.04, 123.09, 121.18, 118.97, 111.68, 110.74, 67.27, 63.37, 62.82, 47.18, 36.30, 14.71, 14.46, 9.03; HRMS: m/z (ESI) calcd for C$_{25}$H$_{26}$FN$_4$NaO$_4$ [M+Na]$^+$ 471,0208, found 471,0203.

diethyl 1-(2-(3-(pyridin-2-yl)phenyl)cyclopent-3-en-1-yl)hydrazine-1,2-dicarboxylate[9]

Following the general procedure, [MnBr(CO)$_5$] (20 mol%) and NaOAc (40 mol%) were used under neat condition at 100 °C for 37 h, product 5f was isolated in 78% yield. The structure was determined by comparison with the reported literature.[9] 1H NMR (300 MHz, CD$_3$OD) δ 8.78 – 8.49 (m, 1H), 7.90 (d, $J = 1.8$ Hz, 1H), 7.49 (dt, $J = 7.8$, 1.1 Hz, 1H), 7.46 – 7.16 (m, 5H), 5.78 (dd, $J = 6.0$, 2.5 Hz, 1H), 5.69 – 5.50 (m, 1H), 4.95 (s, 1H), 4.30 (s, 1H), 4.23 – 3.88 (m, 4H), 2.59 (m, 2H), 1.42 – 0.81 (m, 6H); 13C NMR (75 MHz, CD$_3$OD) δ 160.99, 158.58, 157.45, 149.36, 141.49, 138.69, 134.62, 131.04, 128.95, 127.56, 125.69, 123.56,
Following the general procedure, [MnBr(CO)$_5$] (20 mol%) and NaOAc (40 mol%) were used under neat condition at 100 °C for 37 h. The product 5g was isolated in 72% yield. The structure was determined by comparison with the reported literature.9 1H NMR (400 MHz, CD$_3$OD) δ 8.78 – 8.44 (m, 1H), 7.86 (t, J = 7.3 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.41 – 7.31 (m, 1H), 7.25 (d, J = 9.0 Hz, 1H), 6.96 – 6.79 (m, 2H), 5.86 – 5.73 (m, 1H), 5.56 (s, 1H), 4.97 (s, 1H), 4.42 – 4.29 (m, 1H), 4.19 – 3.90 (m, 4H), 3.82 (s, 3H), 2.78 – 2.38 (m, 2H), 1.34 – 0.96 (m, 6H); 13C NMR (101 MHz, CD$_3$OD) δ 161.68, 160.84, 158.51, 157.53, 149.25, 138.66, 134.56, 134.13, 132.56, 130.29, 126.77, 123.19, 114.19, 113.11, 69.91, 63.40, 62.88, 55.73, 50.73, 36.01, 14.86, 14.64; HRMS: m/z (ESI) calcd for C$_{22}$H$_{25}$N$_3$NaO$_4$ [M+Na]$^+$ 418,1743, found 418,1737.

Following the general procedure, [MnBr(CO)$_5$] (20 mol%) and NaOAc (40 mol%) were used at 100 °C for 24 h, product 5h was isolated in 62% yield. 1H NMR (400 MHz, CD$_3$OD) δ 8.53 (s, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.33 – 7.24 (m, 1H), 5.74 – 5.59 (m, 1H), 5.50 – 5.46 (m, 1H), 5.44 – 5.38 (m, 1H), 4.63 (br, 1H), 4.24 – 4.00 (m, 4H), 3.72 – 3.60 (m, 1H), 2.66 – 2.28 (m, 4H), 2.08 (d, J = 1.1 Hz, 3H), 1.28 – 1.15 (m, 6H); 13C NMR (101 MHz, CD$_3$OD) δ 160.65, 158.60, 157.80, 149.52, 138.52, 137.90, 133.62, 132.78, 129.93, 125.01, 123.47, 66.91, 63.48, 62.70, 36.50, 35.75, 24.45, 14.86, 14.83; HRMS: m/z (ESI) calcd for C$_{19}$H$_{25}$N$_3$NaO$_4$ [M+Na]$^+$ 382,1743, found 382,1748.

Determination of structure was achieved with TOCSY and NOE-Experiments.
3) Gram-scale synthesis of 1a.

General procedure: In a 100 mL dry Schlenk tube with a stirring bar, N-2-pyridylindole (1a) (6.0 mmol), [MnBr(CO)] (10 mol%, 165 mg) and NaOAc (20 mol%, 98.4 mg) were added under air. Then the reaction vessel was evacuated and filled with argon for three times; Afterwards, vinyl-1,3-dioxolan-2-one (2aa) (9.0 mmol) and EtO (20 mL, anhydrous) were added under an argon atmosphere. The tube was sealed and the mixture was stirred at 90 °C for 47 h. Then, the volatiles were removed and the analytically pure product was obtained in 91% yield (1.44 g, E/Z = 6.7) by flash chromatography (silica; gradient of pentane/EtOAc).

4) Radical trapping experiments.

<table>
<thead>
<tr>
<th>1a</th>
<th>2aa</th>
<th>[MnBr(CO)] (10 mol%)</th>
<th>NaOAc (20 mol%)</th>
<th>EtO, 90 °C</th>
<th>3a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-py</td>
<td>O=C=O</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0 mmol</td>
<td>9.0 mmol</td>
<td>with BHT (1.0 eq.)</td>
<td>91%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with 1,1-diphenylethylene (1.0 eq.)</td>
<td>90%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme S1. Radical trapping experiments, isolated yield.

General procedure: In a 10 mL dry Schlenk tube with a stirring bar, N-2-pyridylindole (1a) (0.2
mmol), radical inhibitor (0.2 mmol), [MnBr(CO)$_5$] (10 mol%, 5.5 mg) and NaOAc (20 mol%, 3.2 mg) were added under air. Then the reaction vessel was evacuated and filled with argon for three times; Afterwards, vinyl-1,3-dioxolan-2-one (2aa) (0.3 mmol) and Et$_2$O (1 mL, anhydrous) were added under an argon atmosphere. The tube was sealed and the mixture was stirred at 90 °C for 5 h. Then, the volatiles were removed and the analytically pure product was obtained by flash chromatography (silica; gradient of pentane/EtOAc).

5) H/D scrambling experiments.

![Diagram](image)

Scheme S2. H/D scrambling experiments.

General procedure: In a 10 mL dry Schlenk tube with a stirring bar, N-2-pyridylindole (1a) (0.2 mmol), [MnBr(CO)$_5$] (10 mol%, 5.5 mg) and/or NaOAc (20 mol%, 3.2 mg) were added under air. Then the reaction vessel was evacuated and filled with argon for three times; Afterwards, Et$_2$O (0.9 mL, anhydrous) and CD$_3$OD (0.1 mL) were added under an argon atmosphere. The tube was sealed and the mixture was stirred at 90 °C for 4 h. Then, the volatiles were removed and the analytically pure product was obtained by flash chromatography (silica; gradient of pentane/EtOAc). The H/D-ratio was determined by 1H NMR.
Condition: NaOAc and MnBr(CO)$_5$

Condition: MnBr(CO)$_5$
Condition: NaOAc

1-(pyridin-2-yl)-1H-indole
6) KIE experiments.

Parallel experiments for the synthesis of allylic alcohol.

Following the general procedure 2.1, N-2-pyridylindole (1a) (0.20 mmol) or 2-deuterated N-2-pyridylindole (1a-D) (0.20 mmol), [MnBr(CO)$_5$] (10 mol%, 5.5 mg) NaOAc (20 mol%, 3.3 mg), 1,3,5-trimethoxybenzene (0.068 mmol, internal standard), vinyl-1,3-dioxolan-2-one (2aa) (0.30 mmol) and dioxane (2 mL, anhydrous) were added under an argon atmosphere in two different reaction tubes. The reactions were stirred at 60 °C and samples of 100 μL were taken at intervals to analyze by 1H NMR. KIE value was measured averaging for each run. Note: The yields of 3a are 55% and 54% respectively when 1a or 1a-D was submitted under the optimized condition for 5 minutes, therefore, 60 °C was used.

<table>
<thead>
<tr>
<th>Reaction Time</th>
<th>Yield of 3a (1a was used) %</th>
<th>Yield of 3a (1a-D was used) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>10 min</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>30 min</td>
<td>49</td>
<td>48</td>
</tr>
<tr>
<td>k_H/k_D (on average)</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

7) Proposed mechanism.

The proposed reaction pathway is depicted in Scheme S3. The reaction starts with the base-assisted cyclomanganation of N-(2-pyridyl)-indole 1a, forming a five-membered manganacycle I. Afterwards, coordination of vinyl-1,3-dioxolan-2-one (2aa) to manganacycle I is followed by a migratory insertion to furnish the seven-membered manganacycle II, which undergoes β-oxygen elimination and subsequent protonolysis to deliver the desired product 3a and regenerate the active manganese-(I) complex. Here the anti-β-oxygen elimination of the manganacycle II to afford the trans-adduct as a major product might be a favorable pathway.
Scheme S3. Proposed mechanism.

References

NMR Spectra of Products