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SI Materials and methods  

Electrophoresis analysis for RCA amplicons 

The RCA amplicons in 6 μl 1gel loading buffer were used for gel electrophoresis. Agarose was 

prepared with 40 mM Tris-acetate running buffer containing 40 mM Tris, 20 mM acetic acid, 2 mM 

EDTA (TAE, pH 8.0) to form 1% agarose-TAE sol-gel with 1Unired dye. The gel electrophoresis 

was performed on the prepared gel in TAE at 100 V for 90 min. After electrophoresis, the gel was 

visualized via ChampGel 5000 (Beijing Sage Creation Science Co., Ltd, China).  

Cell culture 

The MCF-7 and 4T1cell line was kindly provided by the National Center for Nanoscience and 

Technology (Beijing, China). The 4T1 cells were cultured in a RPMI 1640 medium supplemented 

with 15% fetal calf serum, 100 μg mL–1 of streptomycin, and 100 units mL–1 of penicillin. The 

MCF-7 cells were cultured in a DMEM medium supplemented with 15% fetal calf serum, 100 μg 

mL–1 of streptomycin, 100 units mL–1 of penicillin and 0.01 mg/ml human recombinant insulin. Cells 

were all cultured at 37 °C in a humidified incubator containing 5% CO2. 

In situ imaging of mRNA by FISH 

Cells were seeded on a 22 mm  22 mm gelatin coated coverglass (VWR, Radnor, USA) enclosed 

by a PDMS with a chamber (5 mm in diameter) and allowed to attach. When the cells reached the 

desired confluency, they were fixed in 4% (w/v) paraformaldehyde in 1  phosphate buffered 

saline (PBS) for 15 min at room temperature (20-25 °C), washed twice with 1  DEPC-treated PBS 

(DEPC-PBS). After fixation, the cells were permeabilized for 5 min with 0.5% v/v Triton-X100 in 1  

PBS at room temperature. This was followed by two brief washes with DEPC-PBS. The 

hybridization of FISH probe with the target mRNA TK1 was conducted in a 20 μL mixture 

containing 100 nM Alexa488-labelled DP-FISH-TK1 probe in 2  SSC, 10 ng/μL salmon sperm 

DNA and 15% formamide at 37 °C for 12 h. The incubation was followed by three washes in 

PBS-T. The slides were ready for imaging after mounted with Fluoromount-G (with DAPI). 

Real-time quantitative PCR (RT-qPCR) analysis of mRNA inside cells 

Total RNA was extracted from MCF-7 cells using TransZol following the manufacturer’s 
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instructions. The cDNA samples were prepared using TransScript one-step gDNA removel and 

cDNA synthesis kit. Briefly, a total volume of 20 μL solution containing 2 μL of the total RNA (50 

ng-5 μg), 1 μL anchored oligo(dT)18 primer (0.5 μg/μl), 10 μL 2  TS reaction mix, 1 μL TransScript 

RT/RI enzyme mix, 1 μL gDNA remover and 5 μL RNase-free water was incubated at 42 °C for 15 

min followed by heat inactivation of reverse transcriptase for 5 s at 85 °C. The cDNA samples were 

stored at -80 °C for future use.  

qPCR analysis of mRNA was performed with SYBR select master mix according to the 

manufacturer’s instructions on a Bio-Rad C1000TM (Bio-Rad, USA). The 20 μL reaction solution 

contained 2 μL of cDNA sample, 10 μL 2 × SYBR Select master mix, 2 μL forward primer (5 μM), 2 

μL reverse primer (5 μM), 4 μL RNase-free water. The qPCR conditions were as follows: staying at 

50 °C for 2 min for the hot start, annealing at 95 °C for 2 min, then followed by 40 cycles of 95 °C 

for 15 s and 60 °C for 60 s. Ct values were converted into absolute GAPDH copy numbers using a 

standard curve from a control RNA (human GAPDH mRNA in RevertAid First Strand cDNA 

Synthesis Kit). A standard curve was prepared from cDNA solutions corresponding to the serially 

diluted solutions of human GAPDH mRNA. The volumes and components of reverse transcription 

and qPCR reaction mixtures were the same as those for the test samples. Obtained results are 

presented as the copies of mRNA per cell. The experiment was repeated three times. The copy 

number of target mRNAs ACTB and TK1 was evaluated by referring to the expression of GAPDH 

mRNA using the 2–∆∆Ct method.1
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Table S1. Oligonucleotide sequences 

Name Sequences (5’-3’) Description 

T-ACTB TAATACGACTCACTATAGGGGCCGCCTAGAAGCATTTGCGGTGGACGATGG 

Used as the templates for 

transcription to produce the target 

RNA sequence for in vitro testing 

P-TK1 
CTCCTTCTCTGTGCCAGTGCGAACTACTACTCTCTCTCAATTCTGCTACTGTACT

TGCGTCTATTTTCTGGAGCCCCCAATCACCTCGAC 

Padlock probes for in situ imaging 

mRNA TK1, The bases marked in 

red indicate the mismatched 

bases between the padlock probe 

and target sequence. 

P-TK1-mis1 
ATCCTTCTCTGTGCCAGTGCGAACTACTACTCTCTCTCAATTCTGCTACTGTACT

TGCGTCTATTTTCTGGAGCCCCCAATCACCTCGAC 

P-TK1-mis2 
ATCCTTCTCTGTGCCAGTGCGAACTACTACTCTCTCTCAATTCTGCTACTGTACT

TGCGTCTATTTTCTGGAGCCCCCAATCACCTCGAA 

P-TK1-random 
ATGCATCCGTTATTAAGTGCGAACTACTACTCTCTCTCAATTCTGCTACTGTACT

TGCGTCTATTTTCTGGAGCCTCTACTGTCTTACGTT 

P-TK1-terminal 
TTTTCAATTAGTTAATATTTTTTTATTTATTATTTTATTGCGTCTATTTTCTGGA

GCCATTATTTTTTTTTTTCCACCAACCAGTGAA 

Padlock probes for targeting the 

3’-terminal site near poly (A) of 

mRNA TK1 

P-ACTB-C 
TGCGGTGGACGATGGTTTTTTTCTCAATTCTGCTACTTTACTACCTCAATTCTGC

TACTGTACTACTTTTTTTCCGCCTAGAAGCATT 
Padlock probes for in situ imaging 

mRNA ACTB in the MCF-7 cells 

P-ACTB-random-C 
ATGCATCCGTTATTATTTTTTTCTCAATTCTGCTACTGTACTACCTCAATTCTGC

TACTGTACTACTTTTTTTTCTACTGTCTTACGTT  

P-hACTB 
TTGCACATGCCGGAGAATTTTTTTATTTATTATTTTATTTGCGTCTATTTTCTGG

AGCCATTTTTTCTTTATTCCCGCGAAGCCGGCC 
Padlock probes for genotyping 

mRNA ACTB 

P-mACTB 
TTGCACATGCCGGAGAATTTTTAACTATACAACATACTACCTCAAACTATACAAC

ATACTACCTCATTTTTTTCCCGCGAAGCCGGCT 

P-PFN1 
AAATGGTTTGTGTGTTTTTTAGTGCGAACTACTACTCTCTTTTTTTCTCAATTCT

GCTACTGTACTACATATAATGGCCCAAAAAATA 

Padlock probes for 

simultaneously imaging of 

mRNAs PFN1, CFL1 and THBS1 

P-CFL1 
GTCAGCTTCTTCTTGTATTTTTTTATTTATTATTTTATTGCGTCTATTTTCTGGA

GCCATTATTTTTTTTTTTTCATGCTTGATCCCT 

P-THBS1 
GCACAAGGGATGGGGTATTTTTTTATTTATTATTTTATAACTATACAACATACTA

CCTCATATTTTTTTTTTTTCTCCCTGGAAATAT 

P-PFN1-S 
AAATGGTTTGTGTGTTTTTTAGTGCGAACTACTACTCTCTTTTTTTAACTATACA

ACATACTACCTCAATATAATGGCCCAAAAAATA Padlock probes for mapping the 

spatial distributions of mRNAs 

PFN1, CFL1, THBS1 and TK1  P-CFL1-S 
GTCAGCTTCTTCTTGTATTTTGCGTCTATTTTCTGGAGCCATTTTTAACTATACA

ACATACTACCTCATTTTTTCATGCTTGATCCCT 
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P-THBS1-S 
GCACAAGGGATGGGGTATTTTTTTATTTATTATTTTATAACTATACAACATACTA

CCTCATATTTTTTTTTTTTCTCCCTGGAAATAT 

P-TK1-S 
CTCCTTCTCTGTGCCAATTTTTAACTATACAACATACTACCTCAAACTATACAAC

ATACTACCTCATTTTTTTCCCAATCACCTCGAC 

DP-488-1 Alexa488-AACTATACAACATACTACCTCA 

Fluorophore-labelled detection 

probes for visualizing RCA 

amplicons 

DP-488-2 Alexa488-AGTGCGAACTACTACTCTCT 

DP-555 Alexa555-CTCAATTCTGCTACTGTACTAC 

DP-Cy5 Cy5-CTCAATTCTGCTACTGTACTAC 

DP-FISH-TK1 Alexa488-GGCACAGAGAAGGAGGTCGAGGTGATTGGG 

Fluorophore-labelled detection 

probe for visualizing mRNA TK1 

by FISH 

Blocking probe GGCACAGAGAAGGAGGTCGAGGTGATTGGG 
To block the binding site of mRNA 

TK1 for RCA detection 

Primer AGTACAGTAGCAGAATTGAG Used as the primer for RCA 
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The detection efficiency of in situ amplification and possible improvement. The in situ 

detection efficiency of target RNA-initiated RCA was estimated to be over 20% on the basis of a 

comparison to RT-qPCR data (Table S3). There are still three main factors that influence the 

detection efficiency of RCA-based in situ mRNA imaging method besides the ligation process. The 

first effect is the amplification bias of RCA. The secondary structures in target mRNA and padlock 

probes, or the association with proteins in the mRNA might block the hybridization between the 

target mRNA and the padlock probes.4 To reduce the amplification bias, the prediction of 

structures of target mRNA maybe helpful for avoiding the blocking effect. And the padlock probe 

should be designed with none or minor secondary structure. Besides, multiple targeting sites on 

mRNA can be tested for improving the efficiency of hybridization and amplification. The second 

factor is the relatively low spatial resolution of amplification-based single-molecule imaging 

method. To provide efficient detection by fluorescence imaging, the RCA amplicons are generally 

large with diameters of ~1 μm. The formation of hundreds of such RCA amplicons per cell causes 

the signals to coalesce, limiting the maximum number for digital quantification of target 

molecules.5 What’s more, the crowding of mRNAs is ubiquitous inside cells such as densely 

located mRNAs in P-body.6 These crowed mRNAs render individual mRNA unresolvable, lowering 

down the detection efficiency. It’s the common problem with other single-molecule RNA imaging 

method like bDNA technology or smFISH. When detecting abundant expressed mRNA ACTB and 

GAPDH, the detection efficiency of bDNA technology is ~10%, while for the low expressed mRNA 

the detection efficiency of bDNA is reaching 100%.7 The third factor may low down the detection 

efficiency is the imaging process. As the fluorescence images are usually obtained from combing 

z-sliced images by MIP. The 3D distributed amplicons were coalesced in the flattening process, 
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Table S3. The average numbers of ACTB and TK1 in the MCF-7 cells measured by target 

RNA-initiated RCA and RT-qPCR 

 

Target mRNA 
Ligase for mRNA 

detection 

Average number measured 

(copies / cell) 
Ct 

Average number measured 

by qPCR 

(copies / cell) 

Detection efficiency 

(%) 

ACTB 

T4 DNA ligase 210.51 

20.18 1929.38 

10.91 

T4 RNA ligase 2 187.18 9.70 

Splint R 380.71 19.73 

TK1 

T4 DNA ligase 14.87 

25.56 102.79 

14.47 

T4 RNA ligase 2 14.03 13.65 

Splint R 28.50 27.73 
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