Supporting Information

Direct Heteroarylation Polymerization: Guidelines for Defect-Free Conjugated Polymers

Thomas Bura¹, Serge Beaupré¹, Marc-André Légaré², Jesse Quinn³, Etienne Rochette², J. Terence Blaskovits¹, Frédéric-Georges Fontaine², Agnieszka Pron⁴, Yuning Li³, Mario Leclerc¹

[*] Prof. Mario Leclerc

1) Canada Research Chair on Electroactive and Photoactive Polymers, Department of Chemistry, Université Laval, Quebec City, Quebec, G1V 0A6 (Canada)
2) Department of Chemistry, Université Laval, Quebec City, Quebec, G1V 0A6 (Canada)
3) Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)
4) Merck Chemicals Ltd, Chilworth Technical Centre, SO16 7QD, United Kingdom. A subsidiary of Merck KGaA, Darmstadt, Germany

E-mail: Mario.Leclerc@ehm.ulaval.ca
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characterization</td>
<td>S3-S4</td>
</tr>
<tr>
<td>2</td>
<td>Fabrication and testing of OFETs</td>
<td>S4-S5</td>
</tr>
<tr>
<td>3</td>
<td>Syntheses</td>
<td>S5-S29</td>
</tr>
<tr>
<td>4</td>
<td>1H NMR spectroscopy</td>
<td>S30-S49</td>
</tr>
<tr>
<td>5</td>
<td>DFT calculations</td>
<td>S50-S101</td>
</tr>
<tr>
<td>6</td>
<td>Tables</td>
<td>S102-S106</td>
</tr>
<tr>
<td>5</td>
<td>Additional crystallographic data</td>
<td>S107-S108</td>
</tr>
<tr>
<td>6</td>
<td>Additional References</td>
<td>S109-S110</td>
</tr>
</tbody>
</table>
1. **Characterization**

1H, 13C and 31P NMR spectra were recorded on a Varian AS400 or Agilent DD2 500MHz apparatus in deuterated solvents. Chemical shifts were reported as δ values (ppm) relative to the residual protic solvent. Number-average (M_n) and weight-average (M_w) molecular weights were determined by size exclusion chromatography (SEC) using a high temperature Varian Polymer Laboratories GPC220 equipped with an RI detector and a PL BV400 HT Bridge Viscometer. The column set consists of 2 PL gel Mixed C (300 x 7.5 mm) columns and a PL gel Mixed C guard column. The flow rate was fixed at 1.0mL/min using 1,2,4-trichlorobenzene (TCB) (with 0.0125% BHT w/v) as eluent. The temperature of the system was set to 110 °C. All the samples were prepared at concentrations of nominally 1.0 mg/mL in TCB. Dissolution was performed using a Varian Polymer Laboratories PL-SP 260VC sample preparation system. The sample vials were held at 110 °C with shaking for 1 h for complete dissolution. The solutions were filtered through a 2 mm porous stainless steel filter used with the 0.40 µm glass filter into a 2 mL chromatography vial. The calibration method used to generate the reported data was the classical polystyrene method using polystyrene narrow standards Easi-Vials PS-M from Varian Polymer Laboratories which were dissolved in TCB. UV-vis-NIR absorption spectra were recorded using a Varian Cary 500 in chloroform solution.

Crystals were mounted on CryoLoops with Paratone-N and optically aligned on a Bruker SMART APEX-II X-ray diffractometer with 1K CCD detector using a digital camera. Initial intensity measurements were performed using a fine-focused sealed tube, graphite-monochromated, X-ray source (Mo $K\alpha$, $\lambda = 0.71073$ Å) at 50 kV and 30 mA. Standard APEX-II1 software package was
used for determining the unit cells, generating the data collection strategy, and controlling data collection. SAINT was used for data integration including Lorentz and polarization corrections. Semi-empirical absorption corrections were applied using SCALE (SADABS).2 The structure was solved by intrinsic phasing using XT3 and the refinement was carried out by least squares method using XL.4 All the calculations have been performed within the APEX-II software package or the OLEX2 GUI software.5 All of the H atoms were generated geometrically and refined in riding model. In some cases, disorder has been added and refined using SIMU and RIGU restraints. Crystallographic data have been deposited with CCDC (1507660 for L5 and 1507661 for L4) These data can be obtained upon request from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, E-mail: deposit@ccdc.cam.ac.uk, or via the Internet at www.ccdc.cam.ac.uk.

2. Fabrication and testing of OFETs

Bottom-contact bottom-gate configuration was used for all OFETs devices and prepared as follows. A heavily n++-doped SiO\textsubscript{2}/Si wafer with ~300 nm thick SiO\textsubscript{2} was patterned with gold source and drain pairs by conventional photolithography and thermal deposition techniques. The substrate was then treated with plasma followed by sonication with acetone and isopropanol. The substrate was placed in a solution of dodecyltrichlorosilane (DDTS) (3 % in toluene) at room temperature for 20 min, and subsequently washed with toluene, and dried under a nitrogen flow. A polymer solution in chloroform (5 mg mL-1) was spin-coated onto the substrate at 3000 rpm for 80 s to give the polymer film, which was further subjected to thermal annealing at
an intended temperature for 20 min under nitrogen atmosphere in a glovebox. All the OFETs were characterized in the same glove box using an Agilent B2912A Precision Source / Measure Unit. The hole and electron mobilities are calculated in the saturation regime of at least five devices according to the following equation:

\[I_{DS} = \left(\frac{WC_i}{2L} \right) \mu (V_{GS} - V_{th})^2 \]

where \(I_{DS} \) is the drain–source current, \(\mu \) is the charge carrier mobility, \(C_i \) is the capacitance per unit area of the dielectric (11.6 nF cm\(^{-2}\)), \(W \) (1000 \(\mu \)m) and \(L \) (30 \(\mu \)m) are OFET channel width and length, \(V_{GS} \) is the gate voltage and \(V_{th} \) is the threshold voltage.

3. Syntheses

3.1 Materials. 2-Bromophenol, 2-bromopropane, 1-bromo-2-ethylhexane, bromocyclopentane, bromocycloheptane, (bromomethyl)cyclohexane, phosphorus trichloride, were commercially available and used without any further purification. 2,6-Dibromo-4,8-bis(didodecyl)benzo[1,2-\(b \):4,5-\(b' \)]dithiophene (Br\(_2\)-BDT-C\(_{12}\)), 4,8-bis(didodecyl)benzo[1,2-\(b \):4,5-\(b' \)]dithiophene (BDT-C\(_{12}\)), 4,8-Bis(2-thienyl)-6-(2-octyldodecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione (TID), 4,8-Bis(5-bromothiophen-2-yl)-6-(2-octyldodecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione (Br\(_2\)-TID) and 4,8-bis(didodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-\(b \);4,5-\(b' \)]dithiophene were supplied by Merck Chemicals Ltd. 1-bromo-2-(isopropoxy)benzene, tris(2-isopropoxyphenyl)phosphine (L\(_1\))\(^6\), 2,6-Dibromo-4,8-bis(2-ethylhexyloxy)benzo[1,2-\(b \):4,5-\(b' \)]dithiophene (Br\(_2\)-BDT-OEH)\(^7\), 4,8-bis(2-ethylhexyloxy)benzo[1,2-\(b \):4,5-\(b' \)]dithiophene (BDT-OEH)\(^8\), (3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]-pyrrole-1,4-dione (Br\(_2\)-DPP)\(^9\),
(3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]-pyrrole-1,4-dione (DPP)\(^9\) and 2,6-Bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b'] dithiophene\(^{10}\) were synthesized according to literature.

3.2 General procedure 1 for the synthesis of 1-bromo-2-(alkoxy)benzene:

3.2.1 1-bromo-2-(2-ethylhexyloxy)benzene: In a flask, a mixture of 2-bromophenol (1eq), \(\text{K}_2\text{CO}_3\) (1.5eq) and acetonitrile ([0.1M]) was stirred at room temperature for 30 min. Then 1-bromo-2-ethylhexane was added and the mixture was heated under reflux until complete consumption of 2-bromophenol (reaction monitored by TLC). Then the reaction the mixture was cooled to room temperature and filtered. The solvent was removed under reduced pressure. The crude product was purified by column chromatography using silica gel and a mixture of hexanes/chloroform (90/10) as eluent to afford the desired compound as a colorless oil (Y = 90%).

\(^{1}\text{H} \text{NMR} 400 \text{MHz (CDCl}_3\text{)} \delta (\text{ppm}): 0.93-1.01 (\text{m, 6H}); 1.34-1.43 (\text{m, 4H}); 1.45-1.65 (\text{m, 4H}); 1.82 (\text{hept, } J = 6.1 \text{ Hz, 1H}); 3.93 (\text{d, } J = 5.6 \text{ Hz, 2H}); 6.83 (\text{td, } J = 7.6, 1.4 \text{ Hz, 1H}); 6.91 (\text{dd, } J = 8.2, 1.4 \text{ Hz, 1H}); 7.27 (\text{ddd, } J = 8.2, 7.5, 1.6 \text{ Hz, 1H}). \(^{13}\text{C} \text{NMR} 100 \text{MHz (CDCl}_3\text{)} \delta (\text{ppm}): 11.3; 14.2; 23.2; 24.1; 29.2; 30.6; 39.5; 71.4; 112.4; 113.1; 121.5; 128.4; 133.3; 155.7;
3.2.2 1-bromo-2-(cyclopentyloxy)benzene: This precursor was synthesized and purified according to general procedure 1 and obtained as a colorless oil (Y = 86%). 1H NMR 400 MHz (CDCl$_3$) δ (ppm): 1.59-1.67 (m, 2H); 1.82-1.95 (m, 6H); 4.80-4.83 (m, 1H); 6.79 (td, J = 7.9, 1.4, 1H); 6.90 (dd, J = 8.3, 1.3 Hz, 1H), 7.23 (ddd, J = 8.2, 7.4, 1.6 Hz, 1H), 7.52 (dd, J = 7.9, 1.6 Hz, 1H). 13C NMR 100 MHz (CDCl$_3$) δ (ppm): 24.1; 32.9; 80.8; 113.2; 114.8; 121.5; 128.3; 133.5; 154.70.
3.2.3 1-bromo-2-(cycloheptyloxy)benzene: This precursor was synthesized and purified according to general procedure 1 and obtained as a colorless oil (Y = 92%). 1H NMR 400 MHz (CDCl$_3$) δ (ppm):

1.41-1.51 (m, 2H); 1.55-1.68 (m, 5H); 1.73-1.82 (m, 2H); 1.84-1.93 (m, 2H); 1.96-2.03 (m, 2H); 4.47 (hept, J = 4.5 Hz, 1H); 6.80 (td, J = 7.6, 1.4 Hz, 1H); 6.87 (dd, J = 8.3, 1.3 Hz, 1H); 7.22 (ddd, J = 8.3, 7.4, 1.6 Hz, 1H); 7.53 (dd, J = 7.9, 1.6 Hz, 1H). 13C NMR 100 MHz (CDCl$_3$) δ (ppm): 22.9; 28.4; 33.7; 79.6; 113.8; 115.6; 121.7; 128.3; 133.6; 154.5.
3.2.4 1-bromo-2-(cyclohexylmethoxy)benzene: This precursor was synthesized and purified according to general procedure 1 and obtained as a colorless oil (Y = 82%). 1H NMR 400 MHz (CDCl$_3$) δ (ppm): 1.05-1.36 (m, 5H); 1.69-1.93 (m, 6H); 3.81 (d, J = 6.2 Hz, 2H); 6.81 (td, J = 7.7, 1.4 Hz, 1H); 6.87 (dd, J = 8.3, 1.4 Hz, 1H), 7.25 (ddd, J = 7.8, 1.6, 1 Hz, 1H), 7.52 (dd, J = 7.9, 1.6 Hz, 1H). 13C NMR 100 MHz (CDCl$_3$) δ (ppm): 25.9; 26.6; 29.9; 37.7; 74.5; 112.4; 113.2; 121.6; 128.5; 133.4; 155.7.
3.3 General procedure 2 for the synthesis of Ligand.

All the ligands (L1-L5) were synthesized according to procedure described in literature.6

3.3.1 Synthesis of tris(2-(2-ethylhexyloxy)phenyl)phosphine (L2): To a diethyl ether solution (20 mL) of 1-bromo-2-isopropoxybenzene (3.44 g, 12.06 mmol) was added at 0°C n-butyllithium (1.5 M in hexane, 8.45 mL, 12.66 mmol). After stirring at 0°C for 1 h, diethyl ether was removed under reduced pressure. Then anhydrous THF (20mL) was added and the solution was cooled at -40°C followed by the slow addition of phosphorus trichloride (0.315 mL, 3.6 mmol). After the addition of PCl₃, the cooling bath was removed and the reaction mixture was allowed to stir overnight at room temperature. A saturated aqueous solution of NH₄Cl was added to the mixture and then extracted with diethyl ether. The organic layer was washed with brine and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure. The residue was purified by column chromatography (aluminum oxide) with CHCl₃/hexanes as eluent (30/70) to afford the desired phosphine as a colorless oil (L2, 1g, 1.545 mmol, Y = 42%). The product was then crystalized in a mixture of ether/methanol by slow evaporation. ¹H NMR 500 MHz (CDCl₃) δ (ppm): 0.71 (t, J = 7.5 Hz, 9H); 0.80 (t, J = 7.4 Hz, 9H);
1.11-1.22 (m, 24H); 1.50-1.52 (m, 3H); 3.76-3.81 (m, 6H); 6.72-6.74 (m, 3H); 6.77-6.80 (m, 3H); 6.83-6.85 (m, 3H); 7.25-7.28 (m, 3H overlap with solvent).

31P NMR 202 MHz (CDCl$_3$) δ (ppm): -36.66.

13C NMR 100 MHz (C$_6$D$_6$): 11.4; 14.5; 23.4; 24.1; 29.5; 30.8; 39.8; 69.8; 110.7; 121.1; 126.4 (d, $J = 17.3$ Hz), 129.8; 134.4; 161.5 (d, $J = 16.9$ Hz).

Anal. Calcd for C$_{42}$H$_{63}$O$_3$P: C, 77.98; H, 9.82 found: C, 77.76; H, 9.73
3.3.2 Synthesis of tris(2-cyclopentyloxyphenyl)phosphine (L3) : L3 was synthesized and purified according to general procedure 2. Colorless crystals (Y = 53%). 1H NMR 500 MHz (CD$_6$D$_6$) δ (ppm): 1.22-1.30 (m, 6H); 1.37-1.44 (m, 6H); 1.48-1.56 (m, 6H); 1.71-1.76 (m, 6H); 4.46-4.49 (m, 3H); 6.68-6.71 (m, 3H); 6.74-6.77 (m, 3H); 7.14-7.18 (m, 6H, overlap with solvent). 31P NMR 202 MHz (CD$_6$D$_6$) δ (ppm): -34.13. 13C NMR 100 MHz (CD$_6$D$_6$) δ (ppm): 24.2; 32.9; 79.4; 112.2 (d, J= 1.2 Hz); 120.6; 127 (d, J= 16.7 Hz); 129.5; 134.9 (d, J= 3.2 Hz); 160.3 (d, J= 16.1 Hz). Anal. Calcd for C$_{33}$H$_{39}$O$_3$P: C, 77.02; H, 7.64 found: C, 77.09; H, 7.72.
3.3.3 Synthesis of tris(2-cycloheptyloxyphenyl)phosphine (L4) : L4 was synthesized and purified according to general procedure 2. Colorless crystals (Y = 58%). 1H NMR 500 MHz (C$_6$D$_6$) δ (ppm): 1.19-1.24 (m, 6H); 1.32-1.41 (m, 12H); 1.53-1.58 (m, 6H), 1.71-1.74 (m, 12H); 4.32 (m, 3H); 6.70-6.72 (m, 3H); 6.76-6.79 (m, 3H); 7.15-7.19 (m, 3H, overlap with solvent) 7.20-7.23 (m, 3H). 31P NMR 202 MHz (C$_6$D$_6$) δ (ppm): -34.44. 13C NMR 100 MHz (C$_6$D$_6$) δ (ppm): 23.1; 28.7; 33.7; 77.6; 112.4 (d, J= 1.6 Hz); 120.7; 127.4 (d, J= 16.6 Hz); 129.6; 135.3 (d, J= 2.7 Hz); 160.3 (d, J= 16.4 Hz). Anal. Caled for C$_{39}$H$_{51}$O$_3$P: C, 78.23; H, 8.58 found: C, 78.43; H, 8.69.
3.3.4 Synthesis of tris(2-cyclohexylmethoxyphenyl)phosphine (L5) : L5 was synthesized and purified according to general procedure 2. Colorless crystals (Y = 68%). 1H NMR 500 MHz (C$_6$D$_6$) δ (ppm): 0.80-0.87 (m, 6H), 1.04-1.12 (m, 9H), 1.41-1.61 (m, 18H); 3.52 (d, 3J = 6.1 Hz, 1H); 6.64-6.67 (m, 3H); 6.77-6.80 (m, 3H); 7.15-7.19 (m, 6H, overlap with solvent). 31P NMR 202 MHz (C$_6$D$_6$) δ (ppm): -36.76. 13C NMR 100 MHz (C$_6$D$_6$) δ (ppm): 26.3; 26.8; 29.9; 37.8; 73.8; 111.1 (d, J= 1.3 Hz); 121.1; 126.4 (d, J= 16.9 Hz); 129.8; 134.7 (d, J= 1.7 Hz); 161.7 (d, J= 16.7 Hz). Anal. Calcd for C$_{39}$H$_{51}$O$_3$P: C, 78.23; H, 8.58 found: C, 78.33; H, 8.69
3.3.5 ORTEP drawing of \textbf{L4} and \textbf{L5} with thermal ellipsoids (50\% probability). Hydrogen atoms are omitted for clarity.
3.4 General procedure 3 for the synthesis of polymer obtained by Migita-Stille coupling.

A 10 mL oven-dry microwave vial was charged with 1 equivalent of dibromo compound, 1 equivalent of bis(trimethylstannyl) compound, 0.02 eq. of Pd$_2$(dba)$_3$, 0.08 eq. of triphenylarsine (AsPh$_3$). The vial was sealed and purged through vacuum/nitrogen filling (3 times). Then, degassed toluene ([0.1]) was added and the reaction mixture was vigorously stirred in a pre-heated oil bath (110°C) until gelation of the reaction mixture. The reaction was then stopped by the addition of 5mL of o-dichrolobenzene (ODCB) and stirred for an additional 20 min. The reaction was cooled at room temperature and the polymer was precipitated in methanol, filtered through a 0.45 µm nylon filter and washed by Soxhlet extraction using acetone, hexanes and then chloroform. The chloroform fraction was reduced to 20-30 mL and then poured in methanol. The precipitate was filtered through 0.45 µm nylon filter and air-dry to give of the desired polymer.

![Chemical structure](image)

3.4.1 P1S was prepared from (3,6-bis(5-bromo-thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]-pyrrole-1,4-dione and 4,8-bis(didodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b;4,5-b’]dithiophene following the general procedure 3: reaction time 1h, Y = 59 %, \bar{M}_n = 56 kDa; \bar{M}_w = 179 kDa; D_M = 3.2.
3.4.2 P2S was prepared from 4,8-Bis(5-bromo-thiophen-2-yl)-6-(2-octyldodecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione and 4,8-bis(didodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b;4,5-b’]dithiophene following the general procedure 3: Reaction time 48h, \(Y = 90\% \). \(M_n = 22 \) kDa; \(M_w = 42 \) kDa; \(D_M = 1.9 \).

\(^1H \) NMR 500 MHz (TCE at 90°C) \(\delta \) (ppm): 8.16 (s, br), 7.78 (s, br), 7.61 (s, br), 3.78 (s, br), 3.30 (s, br), 2.10-2.01 (m, br), 1.64-1.36 (m, br), 0.95 (s, br).

3.4.3 P2S-HC (HC stand for Homocoupling) was prepared from 4,8-Bis(5-bromo-thiophen-2-yl)-6-(2-octyldodecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione (O.8 equivalent), 4,8-bis(didodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b;4,5-b’]dithiophene (1 equivalent), and 2,6-Dibromo-4,8-bis(didodecyl)benzo[1,2-b;4,5-b’]dithiophene (0.2 equivalent) following the general procedure 3: Reaction time 5h, \(Y = 90 \% \). \(M_n = 20 \) kDa; \(M_w = 42 \) kDa; \(D_M = 2.1 \).

\(^1H \) NMR 500 MHz (TCE at 90°C) \(\delta \) (ppm): 8.16 (s, br), 7.78 (s, br), 7.61 (s, br), 3.79 (s, br), 3.30 (s, br), 2.10-2.02 (m, br), 1.64-1.37 (m, br), 0.95 (s, br).

3.4.4 P3S was prepared from (3,6-bis(5-bromo-thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]-pyrrole-1,4-dione and 2,6-Bis(trimethyltin)-4,8-bis(2-
ethylhexyloxy)benzo[1,2-b:4,5-b'] dithiophene following the general procedure 3: Reaction time 5h, Yield = 90%. $\bar{M}_n = 57$ kDa; $\bar{M}_w = 165$ kDa; $D_M = 2.9$.

3.4.5 P4S-High was prepared from 4,8-Bis(5-bromo-thiophen-2-yl)-6-(2-octyldecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione and 2,6-Bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b'] dithiophene following the general procedure 3: Reaction time 3h, Yield = 90%. $\bar{M}_n = 30$ kDa; $\bar{M}_w = 60$ kDa; $D_M = 2.0$. 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.17 (s, br), 7.79-7.76 (m, br), 7.58 (s, br), 4.38 (s, br), 3.78 (s, br), 2.11-2.0 (m, br), 1.78-1.10 (m, br), 0.95 (s, br).

3.4.6 P4S-Low was prepared from 4,8-Bis(5-bromo-thiophen-2-yl)-6-(2-octyldecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione and 2,6-Bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b'] dithiophene following the general procedure 3: Reaction time 3h, Yield = 90%. $\bar{M}_n = 16$ kDa; $\bar{M}_w = 32$ kDa; $D_M = 2$. 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.16 (s, br), 7.79-7.76 (m, br), 7.58 (s, br), 4.38 (s, br), 3.78 (s, br), 2.11-2.0 (m, br), 1.78-1.10 (m, br), 0.99-0.95 (m, br).
3.4.7 P4S-10D and P4S-20D were prepared from 4,8-Bis(5-bromo-thiophen-2-yl)-6-(2-octyldodecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione (0.9 eq. for P4S-10D and 0.8 eq. for P4S-20D), 2,6-Bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (1 eq.) and 3,7-Dibromo-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (0.1 eq. for P4S-10D and 0.2 eq. for P4S-20D) following the general procedure 3: P4S-10D : Reaction time 3h, Yield = 90%. \bar{M}_n = 22 kDa; \bar{M}_w = 40 kDa; D_M = 1.8. P4S-20D : Reaction time 3h, Yield = 90%. \bar{M}_n = 20 kDa; \bar{M}_w = 36 kDa; D_M = 1.8.

1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.16 (s, br), 7.83-7.76 (m, br), 7.59 (s, br), 4.38 (s, br), 3.78 (s, br), 2.10-2.01 (m, br), 1.84-1.34 (m, br), 1.20-1.17 (m, br), 1.09 (s, br), 0.95 (s, br).

3.4.8 P4S-20HC were prepared from 4,8-Bis(5-bromo-thiophen-2-yl)-6-(2-octyldodecyl)-[1,2,5]thiadiazolo[3,4-e]isoindole-5,7-Dione (0.8 eq.) 2,6-Bis(trimethyltin)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (1 eq.) and 2,6-Dibromo-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (0.2 eq.) following the general procedure 3: P4S-20HC : Reaction time 3h, Yield = 90%. \bar{M}_n = 30 kDa; \bar{M}_w = 63 kDa; D_M = 2.1.

1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.16 (s, br), 7.83-7.76 (m, br), 7.59 (s, br), 4.38 (s, br), 3.78 (s, br), 2.10-2.01 (m, br), 1.79-1.11 (m, br), 0.95 (s, br).
3.5 General procedure 4 for the synthesis of P1H, P2H, P3H and P4H by Direct Heteroarylation polymerization.

3.5.1 Polymer P1H: \(\text{Br}_2\text{-BDT-C12} \) (0.150 mmol, 1eq.), DPP (0.150 mmol, 1eq.), \(\text{Pd(OAc)}_2 \) (5 % mol), Phosphine (20 % mol), \(\text{Cs}_2\text{CO}_3 \) (3eq.) and pivalic acid (1eq.) were put in a microwave vial with a magnetic stirring bar. The vial was sealed with a cap and then purged with nitrogen to remove the oxygen (3X). Degassed and anhydrous toluene was added (\(C = 0.5 \text{ mol.l}^{-1}, \) 0.3ml) and the reaction was heated with an oil bath pre-heated at 125 °C (reaction under pressure) until gelation of the reaction mixture. The reaction was cooled to 65 °C and then 1 ml of TCB was added. The mixture was poured in methanol/acidified water (10 % HCl) (9:1), and the solid was recovered by filtration using a 0.45 µm nylon filter. The polymer was washed using a Soxhlet apparatus with acetone, hexanes and then chloroform. The chloroform fraction was reduced to 5-10 mL and then poured in methanol. The polymer was recovered by filtration over a 0.45 µm nylon filter and dry under vacuum.

All polymers P2H, P3H, P4H, P1H’, P2H’, P3H’ were synthesized according to this general procedure 4 with different phosphine.

3.5.2 P2H-L1: \(^1\text{H NMR (TCE 90°C)} \delta \text{ (ppm)} = 8.16 \text{ (s, br)}, 7.78 \text{ (s, br)}; 7.61 \text{ (s, br)}; 3.79 \text{ (s, br)}, 3.29 \text{ (s, br)}; 2.10-2.01 \text{ (m, br)}; 1.64-1.36 \text{ (m, br)}; 0.95 \text{ (s, br)}.

3.5.3 P2H-L2: \(^1\text{H NMR (TCE 90°C)} \delta \text{ (ppm)} = 8.17 \text{ (s, br)}; 7.78 \text{ (s, br)}; 7.61 \text{ (s, br)}; 3.79 \text{ (s, br)}, 3.30 \text{ (s, br)}; 2.10-2.01 \text{ (m, br)}; 1.64-1.36 \text{ (m, br)}; 0.95 \text{ (s, br)}.

3.5.4 P2H-L3: \(^1\text{H NMR (TCE 90°C)} \delta \text{ (ppm)} = 8.16 \text{ (s, br)}; 7.78 \text{ (s, br)}; 7.61 \text{ (s, br)}; 3.77 \text{ (s, br)}, 3.30 \text{ (s, br)}; 2.10-2.01 \text{ (m, br)}; 1.64-1.37 \text{ (m, br)}; 0.95 \text{ (s, br)}.
3.5.5 **P2H-L4**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 3.77 (s, br); 3.30 (s, br); 2.10-2.01 (m, br); 1.64-1.37 (m, br); 0.95 (s, br).

3.5.6 **P2H-L5**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 3.78 (s, br); 3.30 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br).

3.5.7 **P2H'-Lref**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 7.55 (s, br); 3.79 (s, br); 3.29 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br).

3.5.8 **P2H'-L1**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 7.55 (s, br); 3.79 (s, br); 3.29 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br).

3.5.9 **P2H'-L2**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 7.55 (s, br); 3.79 (s, br); 3.29 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br).

3.5.10 **P2H'-L3**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 7.55 (s, br); 3.79 (s, br); 3.29 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br).

3.5.11 **P2H'-L4**: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 7.55 (s, br); 3.79 (s, br); 3.29 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br).
3.5.12 P2H'-L5: 1H NMR (TCE 90°C) δ (ppm) = 8.16 (s, br); 7.78 (s, br); 7.61 (s, br); 7.55 (s, br); 3.79 (s, br); 3.29 (s, br); 2.10-2.01 (m, br); 1.64-1.36 (m, br); 0.95 (s, br)

3.5.13 P4H-Lref: 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.15 (s, br), 7.80 (s, br), 7.59 (s, br), 4.38 (s, br), 3.75 (s, br), 2.09-1.99 (m, br), 1.76-1.33 (m, br), 1.18 (s, br) 1.09 (s, br), 0.95 (s, br).

3.5.14 P4H-L1: 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.16 (s, br), 7.80 (s, br), 7.59 (s, br), 4.38 (s, br), 3.78 (s, br), 2.10-2.0 (m, br), 1.84-1.34 (m, br), 1.19 (s, br) 1.09 (s, br), 0.95 (s, br).

3.5.15 P4H-L2: 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.18 (s, br), 7.82 (s, br), 7.57 (s, br), 4.40 (s, br), 3.81 (s, br), 2.12-2.02 (m, br), 1.88-1.36 (m, br), 1.21 (s, br) 1.12 (s, br), 0.97 (s, br).

3.5.16 P4H-L3: 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.18 (s, br), 7.82 (s, br), 7.61 (s, br), 4.40 (s, br), 3.80 (s, br), 2.12-2.01 (m, br), 1.85-1.36 (m, br), 1.21 (s, br) 1.12 (s, br), 0.97 (s, br).

3.5.17 P4H-L4: 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.16 (s, br), 7.79 (s, br), 7.59 (s, br), 4.40 (s, br), 3.80 (s, br), 2.12-2.01 (m, br), 1.85-1.36 (m, br), 1.21 (s, br) 1.11 (s, br), 0.97 (s, br).

3.5.18 P4H-L5: 1H NMR 500 MHz (TCE at 90°C) δ (ppm): 8.18 (s, br), 7.82 (s, br), 7.61 (s, br), 4.40 (s, br), 3.80 (s, br), 2.13-2.02 (m, br), 1.85-1.36 (m, br), 1.21 (s, br) 1.12 (s, br), 0.97 (s, br).
4. 1H NMR spectroscopy.

The 1H NMR spectra of each monomer and polymer were obtained in deuterated 1,1,2,2-tetrachloroethane ($\text{C}_2\text{D}_2\text{Cl}_4$) at 90 °C using the same acquisition parameters. Model compounds were prepared and characterized in order to assign the signals and to identify the structural defects generated during DHAP between BDT and TID. 1H NMR spectra of **P2S** and **P4S high** were used as benchmark. To lighten the main manuscript, the rational strategy used to identify the defects is reported here. 1H NMR spectra of **P2S** and **P2H** were compared, focusing on the aromatic part of the spectra (Figure 5 in the main text).
In addition to the main signals observed for A (8.16 ppm; TID), B (7.78 ppm; BDT) and C (7.61 ppm; TID), several unexpected resonances can be seen for P2S. The signal observed at 8.21 ppm (a) has the same chemical shift as a resonance found in the 1H NMR spectrum of poly(P2S-HC) (SI 4.3) indicating the presence of homocoupling of the TID units during the copolymerization of (Me$_3$Sn)$_2$-BDT-C$_{12}$ with Br$_2$-TID. Furthermore, two signals (b: 7.55 ppm and c: 7.75 ppm) are also found in the 1H NMR spectrum of poly(BDT) suggesting that BDT homocoupling is also possible during the polymerization of P2S. The signal at 7.55 ppm (b, b’) may also come from either Br-BDT-C$_{12}$, H-BDT-C$_{12}$ or BDT-BDT homocoupling which obfuscates its assignment (SI 4.1). The signals at 7.93 ppm (d) and 7.31 ppm (e) were assigned to the Br-TID terminus chain. We also observed other signals for P2S that could not be assigned based on the NMR data of our model compounds. These 1H NMR analyses clearly show that the Migita-Stille cross-coupling is not a defect-free polymerization method. For P2H-L$_{REF}$, in addition to the main signals for A (8.16 ppm; TID), B (7.78 ppm; BDT) and C (7.61 ppm; TID), other residual signals (a, b’, f, g and h) were observed. The lower intensity of the signal at 8.21 ppm (a) for P2H-L$_{REF}$ compared to the one observed for P2S suggests that the DHAP may lead to a lower rate of TID homocoupling side-reactions. A resonance at 7.55 ppm (b’) was also observed as for P2S, but the absence of a broad peak at 7.75 ppm (c) for P2H-L$_{REF}$ suggests that the signal (b’) is for the Br-BDT-C$_{12}$ terminus unit. To confirm this observation, we synthesized a copolymer with 20% of homocoupling and we found that the intensity of the peak at 7.75 ppm was higher than the one observed for P2S (SI 4.4). Unlike P2S, no signal at 7.93 ppm (d) and 7.31 ppm (e) for the Br-TID terminus chain was detected which is in good agreement with the non-brominated TID comonomer used for the synthesis of the P2H series. Two new signals can be
observed for \textbf{P2H-L$_{\text{REF}}$} at 8.03 ppm (f) and 7.35 ppm (g), both assigned to the H-TID terminus groups. h has the same chemical shift as the main peak B and therefore cannot be observed. Thus, we found that the use of L$_{\text{REF}}$ in DHAP decreases homocoupling when compared to Migita-Stille polymerization. On the other hand, for \textbf{P2H-L2} and \textbf{P2H-L4}, a significant drop of the intensity of the peak at 8.21 ppm (a) (related to the homocoupling of TID) was observed while the other residual peaks (b': 7.55 ppm; f: 8.03 ppm; g: 7.35) are almost the same indicating that the bulkier phosphines limit side reactions, particularly the homocoupling of the TID units.

The aromatic part of the well-defined 1H NMR spectra for \textbf{P2H'-L$_{\text{REF}}$}, \textbf{P2H'-L2} and \textbf{P2H'-L4} is shown below.
As for P2S and P2H, the main peaks A, B and C correspond to the protons of the main chain while the residual signals (a-i) are related to end groups or homocoupling motifs. The residual signal at 8.21 ppm (a) is related to the homocoupling of the TID units for each P2H’. No signal corresponding to the Br-TID units (peak f at 7.93 nm) in P2H’ was found. Moreover, the signals found at 8.03 ppm (h) and 7.35 ppm (i) previously assigned to the H-TID end chains confirm a partial dehalogenation of the Br-TID unit during polymerization. It must be noted that the proton labeled j possesses the same chemical shift that the main peak B and cannot be observed. The signal observed at 7.55 is the most striking feature found in 1H NMR spectra of the P2H’ series. Indeed, this resonance is coming either from Br-BDT end chain units and/or poly-BDT homopolymer (b). If the resonance peak is coming from poly-BDT, we must see a shoulder at 7.75 ppm (c). The absence of a broad peak (c; 7.75 ppm) for the P2H’ series suggests therefore that the 7.55 ppm signal (d) is for Br-BDT-C_{12} terminus unit. The resonance found at 8.43 ppm (k) and 7.84 ppm (l) could not be assigned.

The aromatic part of the well-defined 1H NMR spectra for P4S, P4H-L_{REF}, P4H-L_{2} and P4H-L_{4} is shown below. The main peaks A, B and C correspond to the protons of the main chain while the residual signals (a-k) are related to end groups or homocoupling units. For P4S, in addition to the main signals observed for A (8.17 ppm; TID), B (7.79 ppm; BDT) and C (7.58 ppm; TID), several residual resonances can be observed. The signal found at 8.21 ppm (a) indicates the presence of homocoupling.
Two signals (b: 7.76 ppm and c: 7.46 ppm) are also found in the 1H NMR spectrum of poly(BDT) suggesting that BDT homocoupling is also possible during the polymerization of P4S and confirmed by the analysis of the 1H NMR of P4S-20HC (SI 4.18). Indeed, the intensity of the resonance at 7.76 ppm (for 20% of BDT homocoupling) is higher than the intensity of the resonance observed for P4S (4.15). Both signals at 7.93 ppm (d) and 7.33 ppm (e) were assigned to the Br-TID terminus chain. Two other signals (7.82 and 8.07 ppm) could not be assigned based on the NMR data of the model compounds. For P4H-LREF, in addition to the main signals for A (8.15 ppm; TID), B (7.80 ppm; BDT) and C (7.59 ppm; TID), other residual signals (a, f, h, j and g) were observed. Although the exact integrations were difficult
to determine, the lower intensity of the signal at 8.21 ppm for P4H-LREF compared to the one observed for P4S suggests that the DHAP may lead to lower amounts of TID homocoupling side-reactions. A resonance at 7.77 ppm (h) was also observed (as with P4S), but the absence of a broad peak at 7.46 ppm (c) in the spectrum of P4H-LREF suggests that the signal (h) is for the H-TID terminus. This hypothesis was confirmed by the presence of the signals f and g at 8.03 and 7.35 ppm respectively. As expected, no resonance at 7.93 ppm (d) (Br-TID terminus chain) was detected for P4H-LREF since the non-brominated TID comonomer was used during polymerization. According to the NMR spectrum, the utilization of LREF in DHAP decreases the amount of homocoupling compared to Migita-Stille polymerization. Moreover, for P4H-L2 and P4H-L4, a significant drop of the intensity of the peak at 8.21 ppm (a) (related to the homocoupling of TID) was observed compared to P4S. The other residual peaks (h: 7.77 ppm; f: 8.03 ppm; g: 7.35) for P4H-L2 and P4H-L4 are less intense compared to P4H-LREF due to higher molecular weights. Despite similar NMR spectra for P4H series, the structural defects differ from those found in P4S.
4.1 1H NMR spectra (500 MHz) in TCE at 90°C of all monomers used for DHAP
4.2 1H NMR spectrum (500 MHz) in TCE at 90°C of P2S.

4.3 1H NMR spectrum (500 MHz) in TCE at 90°C of P2S-HC.
4.4 1H NMR spectrum (500 MHz) in TCE at 90°C of P2S and P2S-HC in aromatic part.

4.5 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H-L1.
4.6 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H-L2.

4.7 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H-L4.
4.8 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H-L5

4.9 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H'-L.ref.
4.10 1H NMR spectrum (500 MHz) in TCE at 90°C of **P2H’-L1**.

4.11 1H NMR spectrum (500 MHz) in TCE at 90°C of **P2H’-L2**.
4.12 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H'-L3.

4.13 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H'-L4.
4.14. 1H NMR spectrum (500 MHz) in TCE at 90°C of P2H'-L5

4.15. 1H NMR spectrum (500 MHz) in TCE at 90°C of P4S-High.
4.16 1H NMR spectrum (500 MHz) in TCE at 90°C of P4S-Low.

4.17 1H NMR spectrum (500 MHz) in TCE at 90°C of P4S-20D.
4.18 1H NMR spectrum (500 MHz) in TCE at 90°C of P4S-20HC.
4.19 1H NMR spectrum (500 MHz) in TCE at 90°C of P4S-20D, P4S-High and P4S-Low in aromatic part.
4.20 1H NMR spectrum (500 MHz) in TCE at 90°C of P4H-Lref.

![Image of H NMR spectrum](image1)

4.21 1H NMR spectrum (500 MHz) in TCE at 90°C of P4H-Lref.

![Image of H NMR spectrum](image2)
4.22 1H NMR spectrum (500 MHz) in TCE at 90°C of P4H-L2.

4.23 1H NMR spectrum (500 MHz) in TCE at 90°C of P4H-L3.
4.24 1H NMR spectrum (500 MHz) in TCE at 90°C of P4H-L4.

4.25 1H NMR spectrum (500 MHz) in TCE at 90°C of P4H-L5.
5. **DFT calculations**

All calculations were performed using the Gaussian 09 Suite of programs.16 The B3LYP functional17, 18 was used in combination with the TZVP basis set19 for all atoms except Pd (DZVP).20 This method was previously applied by Gorelski to elucidate the selectivity of palladium-catalyzed direct arylation.21 The transition states were located and confirmed by frequency calculations (single imaginary frequency). The stationary points were characterized as minima by full vibration frequency calculations (no imaginary frequency). All geometry optimizations were carried out without any symmetry constraints. It is worth noting that methyl group was used as side chain on each comonomer (instead of linear or branched alkyl chains) to keep computational times reasonable. This approximation should not affect the results since alkyl chains are known to affect mostly the molecular packing, which is not considered here because all molecular calculations were done on single molecules in vacuum.
Cartesian coordinates for calculated species

a) Model catalyst

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>2.43414400</td>
<td>3.30462500</td>
<td>17.78838900</td>
</tr>
<tr>
<td>P</td>
<td>0.83172300</td>
<td>4.69522000</td>
<td>18.65852500</td>
</tr>
<tr>
<td>C</td>
<td>2.27207100</td>
<td>4.33427400</td>
<td>16.04987100</td>
</tr>
<tr>
<td>C</td>
<td>3.14732900</td>
<td>5.99637300</td>
<td>14.52211100</td>
</tr>
<tr>
<td>H</td>
<td>3.82868200</td>
<td>6.81650200</td>
<td>14.32555700</td>
</tr>
<tr>
<td>C</td>
<td>1.41936400</td>
<td>3.88190900</td>
<td>15.04248100</td>
</tr>
<tr>
<td>H</td>
<td>0.75003700</td>
<td>3.04828300</td>
<td>15.22213500</td>
</tr>
<tr>
<td>C</td>
<td>3.13120100</td>
<td>5.40071000</td>
<td>15.78328500</td>
</tr>
<tr>
<td>H</td>
<td>3.80827700</td>
<td>5.76401700</td>
<td>16.54794200</td>
</tr>
<tr>
<td>C</td>
<td>1.43675000</td>
<td>4.47918200</td>
<td>13.78192400</td>
</tr>
<tr>
<td>H</td>
<td>0.77733100</td>
<td>4.10933100</td>
<td>13.00483000</td>
</tr>
<tr>
<td>C</td>
<td>2.29806700</td>
<td>5.53952700</td>
<td>13.51927900</td>
</tr>
<tr>
<td>H</td>
<td>2.31116600</td>
<td>6.00241500</td>
<td>12.53996600</td>
</tr>
<tr>
<td>O</td>
<td>2.99815000</td>
<td>1.87017500</td>
<td>19.39475900</td>
</tr>
<tr>
<td>O</td>
<td>3.96313800</td>
<td>1.72794700</td>
<td>17.41625600</td>
</tr>
<tr>
<td>C</td>
<td>3.82307300</td>
<td>1.31128800</td>
<td>18.60467900</td>
</tr>
<tr>
<td>C</td>
<td>4.66124000</td>
<td>0.15509200</td>
<td>19.08795100</td>
</tr>
<tr>
<td>H</td>
<td>4.70606100</td>
<td>-0.24921800</td>
<td>20.01610700</td>
</tr>
<tr>
<td>H</td>
<td>4.70606100</td>
<td>-0.61899800</td>
<td>18.32186000</td>
</tr>
<tr>
<td>H</td>
<td>5.68122900</td>
<td>0.50541400</td>
<td>19.26284800</td>
</tr>
<tr>
<td>C</td>
<td>1.18202100</td>
<td>6.50502800</td>
<td>18.68740400</td>
</tr>
<tr>
<td>H</td>
<td>1.28140700</td>
<td>6.86965500</td>
<td>17.66606300</td>
</tr>
<tr>
<td>H</td>
<td>0.37881500</td>
<td>7.04480000</td>
<td>19.19282900</td>
</tr>
<tr>
<td>H</td>
<td>2.12095300</td>
<td>6.68379400</td>
<td>19.21140300</td>
</tr>
<tr>
<td>C</td>
<td>-0.84910000</td>
<td>4.59127800</td>
<td>17.90811800</td>
</tr>
<tr>
<td>H</td>
<td>-1.55152900</td>
<td>5.23570500</td>
<td>18.44034400</td>
</tr>
<tr>
<td>H</td>
<td>-0.79681800</td>
<td>4.89272700</td>
<td>16.86269300</td>
</tr>
<tr>
<td>H</td>
<td>-1.20055900</td>
<td>3.56052700</td>
<td>17.95451000</td>
</tr>
<tr>
<td>C</td>
<td>0.54980400</td>
<td>4.27281700</td>
<td>20.43224600</td>
</tr>
<tr>
<td>H</td>
<td>-0.22198300</td>
<td>4.90954000</td>
<td>20.86957300</td>
</tr>
<tr>
<td>H</td>
<td>0.25349300</td>
<td>3.22715600</td>
<td>20.50983800</td>
</tr>
<tr>
<td>H</td>
<td>1.48234200</td>
<td>4.39468200</td>
<td>20.98258600</td>
</tr>
</tbody>
</table>
b) Monomers

1) BDTBr

```
C   -0.28175300  1.08152300  0.85004100
C    1.00800300  0.81260300  1.14192800
S   -0.53245400  2.62718400  0.05102500
C    1.90304500  1.86507800  0.73330600
H    1.32155900 -0.09975000  1.62558500
C    1.21200300  2.94411100  0.11489600
C    3.29804200  1.91118300  0.88267500
C    1.83575600  4.08647600 -0.36808100
C    3.92540400  3.04764400  0.38257800
C    4.07542300  0.78756400  1.51274800
C    3.23416000  4.12653200 -0.23213000
C    1.06682000  5.19969400 -1.02659800
S    5.66732000  3.35678800  0.41793000
H    3.48664700  0.26001400  2.26288400
H    4.39035600  0.05517200  0.76278600
H    4.97597900  1.15851100  2.00507300
C    4.13626200  5.16748500 -0.65233900
H    0.03614400  5.23680100 -0.67016200
H    1.51712100  6.17159200 -0.82352900
H    1.03424000  5.07037500 -2.11289900
C    5.43165600  4.90084900 -0.37570900
H    3.81886600  6.07448800 -1.14619900
H    6.29136100  5.51596200 -0.59072900
Br   -1.76762800 -0.03068200  1.21161800
```
2) BDTH

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-1.14704900</td>
<td>0.43747100</td>
<td>1.00306000</td>
</tr>
<tr>
<td>C</td>
<td>-0.29001400</td>
<td>1.06477500</td>
<td>0.81407300</td>
</tr>
<tr>
<td>C</td>
<td>1.00219400</td>
<td>0.80717400</td>
<td>1.11158100</td>
</tr>
<tr>
<td>S</td>
<td>-0.52491900</td>
<td>2.61159400</td>
<td>0.02441600</td>
</tr>
<tr>
<td>C</td>
<td>1.90409200</td>
<td>1.85975900</td>
<td>0.71822200</td>
</tr>
<tr>
<td>H</td>
<td>1.31860300</td>
<td>-0.10640800</td>
<td>1.59369600</td>
</tr>
<tr>
<td>C</td>
<td>1.21369200</td>
<td>2.93889300</td>
<td>0.09985800</td>
</tr>
<tr>
<td>C</td>
<td>3.29863700</td>
<td>1.91036000</td>
<td>0.87706000</td>
</tr>
<tr>
<td>C</td>
<td>1.83943600</td>
<td>4.08601500</td>
<td>-0.37403400</td>
</tr>
<tr>
<td>C</td>
<td>3.92623500</td>
<td>3.04997500</td>
<td>0.38709600</td>
</tr>
<tr>
<td>C</td>
<td>4.07481600</td>
<td>0.78602600</td>
<td>1.50779800</td>
</tr>
<tr>
<td>C</td>
<td>3.23565500</td>
<td>4.13010200</td>
<td>-0.22815900</td>
</tr>
<tr>
<td>C</td>
<td>1.07005100</td>
<td>5.19857500</td>
<td>-1.03340400</td>
</tr>
<tr>
<td>S</td>
<td>5.66801100</td>
<td>3.36429900</td>
<td>0.43584400</td>
</tr>
<tr>
<td>H</td>
<td>3.48109900</td>
<td>0.25397600</td>
<td>2.25085000</td>
</tr>
<tr>
<td>H</td>
<td>4.39675500</td>
<td>0.05729700</td>
<td>0.75710300</td>
</tr>
<tr>
<td>H</td>
<td>4.97123000</td>
<td>1.15669900</td>
<td>2.00809100</td>
</tr>
<tr>
<td>C</td>
<td>4.13886600</td>
<td>5.17534500</td>
<td>-0.63742200</td>
</tr>
<tr>
<td>H</td>
<td>0.04586500</td>
<td>5.24723100</td>
<td>-0.66010600</td>
</tr>
<tr>
<td>H</td>
<td>1.53164900</td>
<td>6.16909000</td>
<td>-0.85057500</td>
</tr>
<tr>
<td>H</td>
<td>1.01728100</td>
<td>5.05590300</td>
<td>-2.11738700</td>
</tr>
<tr>
<td>C</td>
<td>5.43287200</td>
<td>4.91163000</td>
<td>-0.35299600</td>
</tr>
<tr>
<td>H</td>
<td>3.82267500</td>
<td>6.08361100</td>
<td>-1.12979600</td>
</tr>
<tr>
<td>H</td>
<td>6.29208700</td>
<td>5.53036600</td>
<td>-0.55953300</td>
</tr>
</tbody>
</table>
3) BTABr

```
C    -0.27455400  1.11830400  0.96641900
C     1.02919500  0.74912700  1.11808600
S    -0.39630400  2.71749000  0.28037300
H     1.36250500 -0.19488400  1.52208900
C     1.36711400  2.75423800  0.25651400
C     2.07773200  3.90955200 -0.24220600
S     3.84115000  3.94630000 -0.26606500
C     2.41565100  5.91466300 -1.10377700
C     3.71940000  5.54548600 -0.95211100
H     2.08234100  6.85867400 -1.50778100
N     1.94227500  1.67894200  0.71543200
N     1.50257100  4.98484800 -0.70112400
Br    -1.79946500  0.10422700  1.40833000
Br     5.24431000  6.55956300 -1.39402200
```
4) VTAN

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-1.16813200</td>
<td>0.52079000</td>
<td>1.14359300</td>
</tr>
<tr>
<td>C</td>
<td>-0.28384100</td>
<td>1.09454200</td>
<td>0.91935500</td>
</tr>
<tr>
<td>C</td>
<td>1.02071600</td>
<td>0.74644400</td>
<td>1.10176200</td>
</tr>
<tr>
<td>S</td>
<td>-0.39331700</td>
<td>2.68406900</td>
<td>0.23331700</td>
</tr>
<tr>
<td>H</td>
<td>1.36000800</td>
<td>-0.19252000</td>
<td>1.51435800</td>
</tr>
<tr>
<td>C</td>
<td>1.36818000</td>
<td>2.74887800</td>
<td>0.24903900</td>
</tr>
<tr>
<td>C</td>
<td>2.07666600</td>
<td>3.91491200</td>
<td>-0.23473100</td>
</tr>
<tr>
<td>S</td>
<td>3.83816300</td>
<td>3.97972100</td>
<td>-0.21900900</td>
</tr>
<tr>
<td>C</td>
<td>2.42413000</td>
<td>5.91734600</td>
<td>-1.08745400</td>
</tr>
<tr>
<td>C</td>
<td>3.72868700</td>
<td>5.56924800</td>
<td>-0.90504600</td>
</tr>
<tr>
<td>H</td>
<td>2.08483700</td>
<td>6.85631000</td>
<td>-1.50004900</td>
</tr>
<tr>
<td>H</td>
<td>4.61297800</td>
<td>6.14300000</td>
<td>-1.12928400</td>
</tr>
<tr>
<td>N</td>
<td>1.94373500</td>
<td>1.68078300</td>
<td>0.72316400</td>
</tr>
<tr>
<td>N</td>
<td>1.50111100</td>
<td>4.98300700</td>
<td>-0.70885600</td>
</tr>
</tbody>
</table>
5) DPPBr

```plaintext
C    -2.73912100  -1.49314400  3.88795400
C    -1.50222700  -1.51715200  3.31082100
S    -3.48616100  -3.05980300  3.94378600
C    -1.12747300  -2.81321300  2.89776900
H    -0.88493800  -0.63984500  3.18745900
C    -2.07549900  -3.78544100  3.15701200
Br   -3.63560200   0.01303100  4.58210900
H    -0.18445900  -3.04493900  2.41724300
C    -1.93022700  -5.17754500  2.83002600
C    -0.84181800  -5.77048300  2.20338600
C    -2.39633700  -7.46475900  2.62716400
C    -1.09601500  -7.16800100  2.06424600
C    0.45895900  -5.48727700  1.63520500
C    -0.02527200  -7.74444100  1.44516200
H    0.15051700  -8.77272400  1.16878300
N    0.90824100  -6.77209500  1.18132600
N    0.90824100  -6.77209500  1.18132600
N    2.18994800  -6.96724800  0.53202200
C    2.06162100  -7.36896800  0.47509100
H    2.67192100  -5.99374500  0.46716300
H    2.82530000  -7.64044000  1.11129300
O    1.12126200  -4.46561200  1.51022800
O    -3.04014900  -8.48664300  2.74455200
```

57
6) DPPH

<table>
<thead>
<tr>
<th>Atom</th>
<th>X-Coord</th>
<th>Y-Coord</th>
<th>Z-Coord</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-2.73835</td>
<td>-1.48868</td>
<td>3.89618</td>
</tr>
<tr>
<td>C</td>
<td>-1.50053</td>
<td>-1.51974</td>
<td>3.31913</td>
</tr>
<tr>
<td>S</td>
<td>-3.47336</td>
<td>-3.05191</td>
<td>3.94283</td>
</tr>
<tr>
<td>C</td>
<td>-1.11724</td>
<td>-2.81201</td>
<td>2.90013</td>
</tr>
<tr>
<td>H</td>
<td>-0.88006</td>
<td>-0.64339</td>
<td>3.19697</td>
</tr>
<tr>
<td>C</td>
<td>-2.06815</td>
<td>-3.78288</td>
<td>3.15774</td>
</tr>
<tr>
<td>H</td>
<td>-0.17489</td>
<td>-3.04440</td>
<td>2.41992</td>
</tr>
<tr>
<td>C</td>
<td>-1.92477</td>
<td>-5.17569</td>
<td>2.82863</td>
</tr>
<tr>
<td>C</td>
<td>-0.83871</td>
<td>-5.77126</td>
<td>2.19993</td>
</tr>
<tr>
<td>C</td>
<td>-2.39669</td>
<td>-7.46188</td>
<td>2.62538</td>
</tr>
<tr>
<td>C</td>
<td>-1.09660</td>
<td>-7.16846</td>
<td>2.06072</td>
</tr>
<tr>
<td>C</td>
<td>0.46254</td>
<td>-5.49203</td>
<td>1.63041</td>
</tr>
<tr>
<td>C</td>
<td>-0.02904</td>
<td>-7.74850</td>
<td>1.44028</td>
</tr>
<tr>
<td>H</td>
<td>0.14288</td>
<td>-8.77736</td>
<td>1.16358</td>
</tr>
<tr>
<td>N</td>
<td>0.90684</td>
<td>-6.77876</td>
<td>1.17468</td>
</tr>
<tr>
<td>N</td>
<td>2.85849</td>
<td>-6.17590</td>
<td>3.08613</td>
</tr>
<tr>
<td>C</td>
<td>4.15449</td>
<td>-6.06965</td>
<td>3.72882</td>
</tr>
<tr>
<td>H</td>
<td>4.06626</td>
<td>-5.70597</td>
<td>4.75370</td>
</tr>
<tr>
<td>H</td>
<td>4.83058</td>
<td>-5.42252</td>
<td>3.16776</td>
</tr>
<tr>
<td>H</td>
<td>4.56883</td>
<td>-7.07627</td>
<td>3.74769</td>
</tr>
<tr>
<td>C</td>
<td>2.18842</td>
<td>-6.97829</td>
<td>0.52707</td>
</tr>
<tr>
<td>H</td>
<td>2.06046</td>
<td>-7.38145</td>
<td>-0.47960</td>
</tr>
<tr>
<td>H</td>
<td>2.67221</td>
<td>-6.00572</td>
<td>0.46114</td>
</tr>
<tr>
<td>H</td>
<td>2.82206</td>
<td>-7.65184</td>
<td>1.10797</td>
</tr>
<tr>
<td>O</td>
<td>1.12989</td>
<td>-4.47399</td>
<td>1.50456</td>
</tr>
<tr>
<td>O</td>
<td>-3.04246</td>
<td>-8.48291</td>
<td>2.74282</td>
</tr>
<tr>
<td>H</td>
<td>3.26879</td>
<td>-0.64073</td>
<td>4.29969</td>
</tr>
</tbody>
</table>
7) FTVTH

C -6.63377700 -1.36733600 -0.00019600
C -5.28176400 -1.27217400 -0.00051500
C -4.80848000 0.06406700 0.00020200
C -5.79203700 1.01808600 0.00105900
S -7.36157700 0.21595500 0.00092100
H -7.23793900 -2.25853200 -0.00059700
C -5.59672600 2.44210400 0.00191500
H -4.55372400 2.74443400 0.00180100
C -6.56415400 3.37983900 0.00282500
H -7.60714400 3.07746600 0.00296300
C -6.36888600 4.80387400 0.00369000
C -7.35247400 5.75786600 0.00447900
S -4.79937500 5.60606000 0.00389000
C -6.87923400 7.09412300 0.00522600
C -5.52722400 7.18932700 0.00504000
H -4.92310600 8.08052800 0.00549100
F -7.71930000 8.13628600 0.00603800
F -8.66247700 5.47475700 0.00454700
F -3.49846600 0.34714000 0.00004300
F -4.44173100 -2.31436700 -0.00138800
8) NDPPBr

C -1.40624900 0.08258200 0.58891100
C -1.86680600 1.24869100 1.24137700
C -2.22460000 -0.27914300 -0.44191800
S -3.00706800 1.79227200 0.69419800
H -3.54290100 0.82173900 -0.67299800
H -1.37382200 1.67472600 2.10092500
C -3.75996200 2.93551700 1.20343800
C -4.40929100 3.90494200 0.46376700
C -3.88905700 3.10720300 2.64153800
C -5.14281700 4.97902900 1.06077700
H -5.84229000 5.99752600 2.81148000
N -3.37369200 2.29442200 3.55831300
N -4.67006600 4.20336800 4.55213800
S -3.80155400 2.88811200 5.03432900
C -4.44353200 4.14235600 -1.01508300
C -5.66983100 5.85788200 -0.02110600
O -6.34719400 6.85391700 0.08059600
O -3.93088500 3.52174600 -1.91654100
N -5.20858500 5.30000800 -1.21210000
C -5.46861300 5.85620400 -2.52763800
H -6.11228600 6.72303700 -2.39826500
H -4.53486900 6.15519300 -3.00471400
H -5.96101100 5.11590200 -3.15816700
H -0.51955900 -0.46487300 0.87132600
Br -2.00869700 -1.76973100 -1.58010700
9) NDPPH

\[
\begin{array}{cccc}
C & -1.41311500 & 0.09524200 & 0.56497800 \\
C & -1.84844000 & 1.27038400 & 1.22104100 \\
C & -2.27366100 & -0.30852100 & -0.41626300 \\
C & -3.02251700 & 1.78246900 & 0.71760800 \\
S & -3.61214500 & 0.76788700 & -0.58713400 \\
H & -1.31787000 & 1.72824700 & 2.04147800 \\
H & -2.19448600 & -1.16908200 & -1.06149100 \\
C & -3.76612400 & 2.93409700 & 1.22269700 \\
C & -4.40900500 & 3.89947700 & 0.47460300 \\
C & -3.89371200 & 3.11661000 & 2.65794500 \\
C & -5.14851900 & 4.97493300 & 1.06217900 \\
C & -4.65365600 & 4.21896800 & 3.23077800 \\
C & -5.29704500 & 5.17163800 & 2.39552200 \\
H & -5.85811200 & 6.00015100 & 2.80484800 \\
N & -3.37332900 & 2.31192300 & 3.57915800 \\
N & -4.67749800 & 4.22404100 & 4.56067000 \\
S & -3.80159600 & 2.91581500 & 5.05090800 \\
C & -4.42395900 & 4.13446100 & -1.00555200 \\
C & -5.67270300 & 5.84567300 & -0.02761000 \\
O & -6.35643300 & 6.83874700 & 0.06452600 \\
O & -3.88852900 & 3.52387200 & -1.89984500 \\
N & -5.19901300 & 5.28571300 & -1.21244200 \\
C & -5.44452800 & 5.84062000 & -2.53109500 \\
H & -6.09686200 & 6.70232900 & -2.41090800 \\
H & -4.50643500 & 6.14733100 & -2.99471400 \\
H & -5.92175300 & 5.09684300 & -3.16914700 \\
H & -0.50384300 & -0.43223800 & 0.81581500 \\
\end{array}
\]
10) OBDTBr

H 1.03703000 -0.65110300 1.05517500
C 0.34617000 -1.25474900 0.48676200
C 0.65766000 -2.45370400 -0.05114700
C -1.00686200 -0.86459900 0.19665000
S -0.65415600 -3.21511400 -0.95074000
C -1.68586800 -1.82627200 -0.59751600
C -1.67874800 0.29828000 0.59127300
C -2.99247300 -1.65396800 -1.02725700
C -2.98808300 0.47139500 0.16191600
C -3.66672900 -0.49072100 -0.63165100
S -4.02410600 1.85346800 0.51228700
C -5.01878300 -0.09270500 -0.91599500
C -5.33900900 1.10644200 -0.38048400
H -5.70917400 -0.69777400 -1.48533500
H -6.28307800 -0.66367800 -1.44652700
O -1.04697900 1.26634000 1.33593400
O -3.61435400 -2.62774500 -1.77356700
C -1.12870100 1.08642700 2.75782500
H -0.59842100 1.92653200 3.20160900
H -2.16830300 1.09190500 3.09569000
H -0.65348700 0.15078800 3.06485900
C -3.58553800 -2.41434500 -3.19271900
H -2.55737700 -2.37392900 -3.56220900
H -4.09839200 -3.26415500 -3.63850400
H -4.10360800 -1.49092100 -3.46456800
Br 2.32204400 -3.34001300 0.08124500
11) OBDTH

H 1.03535200 -0.63801300 1.02672400
C 0.34573400 -1.24435300 0.45772000
C 0.66901600 -2.43947000 -0.08426700
C -1.00996700 -0.85117500 0.18222800
S -0.64747300 -3.18981500 -0.97352500
H 1.61587000 -2.95326200 -0.02508500
C -1.68878800 -1.81362700 -0.61146700
C -1.68590100 0.30683300 0.58606400
C -3.00137300 -1.64477100 -1.02946200
C -2.99843500 0.47566900 0.16807900
C -3.67734000 -0.48688000 -0.62548900
S -4.03966400 1.85209500 0.52974400
C -5.03297400 -0.09352000 -0.90132500
C -5.35616600 1.10172100 -0.35961300
H -5.72251800 -0.70094000 -1.47018000
H -6.30293700 1.61565500 -0.41883700
O -1.05578800 1.27677700 1.33192500
O -3.63163500 -2.61452900 -1.77543000
C -1.11716300 1.08133100 2.75166300
H -0.59353900 1.92422500 3.19850300
H -2.15257600 1.06849200 3.10257100
H -0.62532600 0.14937700 3.04370600
C -3.56895800 -2.41968700 -3.19524400
H -2.53327200 -2.40764700 -3.54533200
H -4.09276600 -3.26243100 -3.64214300
H -4.06000200 -1.48752700 -3.48795300
12) ThioBr

C -0.89121100 0.95317600 0.00014000
C 0.46568900 0.98336300 -0.00060100
C 0.99584300 2.31494100 -0.00016000
C 0.02177400 3.27524700 0.00086500
S -1.57975400 2.55351600 0.00139800
H 1.07885100 0.09279100 -0.00146300
C 2.47293200 2.59279400 -0.00061600
H 2.95612600 2.16239400 0.88080000
H 2.95632000 2.15811900 -0.87979600
H 2.68270700 3.66199700 -0.00317500
C 0.16565800 4.76832100 0.00159900
H 0.70814600 5.11645400 0.88433300
H 0.70706200 5.11741300 -0.88142900
H -0.80631900 5.26246000 0.00246500
Br -1.99625800 -0.58385100 -0.00014900
13) ThioH

```
C    -0.89543700  0.94364900  0.00013800
C     0.46309300  0.98683900 -0.00053700
C     0.99912600  2.31492500 -0.00017200
C     0.02170100  3.27364500  0.00089500
S    -1.57187900  2.54383600  0.00170800
H    -1.54099700  0.08032300 -0.00004200
H     1.08203100  0.09872200 -0.00142000
C     2.47551800  2.59737200 -0.00068400
H     2.96060700  2.16859000  0.88073100
H     2.96086900  2.16351100 -0.87943400
H     2.68401900  3.66703200 -0.00371900
C     0.16626000  4.76657300  0.00163700
H     0.70937400  5.11520400  0.88401100
H     0.70848100  5.11616000 -0.88091400
H    -0.80590100  5.26030400  0.00239900
```
15) 1,2,4,5-tetrafluorobenzene

C -1.51498500 1.02019000 0.00006700
C -0.13037600 1.00691400 0.00048900
C 0.55051900 2.21252900 -0.00001800
C -0.14399600 3.41555500 -0.00101400
C -1.52855900 3.42882800 -0.00144800
C -2.20947500 2.22317100 -0.00093400
H 0.41009500 0.07047400 0.00127300
H -2.06911400 4.36522000 -0.00224000
F -2.19536600 -0.13630100 0.00057900
F -3.55119700 2.21234700 -0.00136700
F 1.89223500 2.22344300 0.00041600
F 0.53645800 4.57199800 -0.00152100
16) TPD

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.94323300</td>
<td>-0.91293600</td>
<td>0.41207200</td>
</tr>
<tr>
<td>C</td>
<td>3.33807000</td>
<td>-0.25868600</td>
<td>-0.03561300</td>
</tr>
<tr>
<td>S</td>
<td>2.01399800</td>
<td>-0.91241000</td>
<td>-0.96706500</td>
</tr>
<tr>
<td>C</td>
<td>2.94561000</td>
<td>-0.06574300</td>
<td>1.24833300</td>
</tr>
<tr>
<td>C</td>
<td>1.59706800</td>
<td>-0.43420700</td>
<td>1.50025300</td>
</tr>
<tr>
<td>H</td>
<td>4.29368000</td>
<td>-0.06875000</td>
<td>-0.49876600</td>
</tr>
<tr>
<td>C</td>
<td>3.53767600</td>
<td>0.43511000</td>
<td>2.51468600</td>
</tr>
<tr>
<td>C</td>
<td>1.29817000</td>
<td>-0.17758700</td>
<td>2.93158800</td>
</tr>
<tr>
<td>N</td>
<td>2.50030000</td>
<td>0.33536300</td>
<td>3.46050600</td>
</tr>
<tr>
<td>O</td>
<td>4.64796400</td>
<td>0.84786300</td>
<td>2.75022000</td>
</tr>
<tr>
<td>O</td>
<td>0.27919500</td>
<td>-0.34879900</td>
<td>3.55646400</td>
</tr>
<tr>
<td>C</td>
<td>2.66127800</td>
<td>0.73063200</td>
<td>4.84775000</td>
</tr>
<tr>
<td>H</td>
<td>1.72987200</td>
<td>0.51094800</td>
<td>5.36457000</td>
</tr>
<tr>
<td>H</td>
<td>3.48004400</td>
<td>0.17549900</td>
<td>5.30597900</td>
</tr>
<tr>
<td>H</td>
<td>2.87911600</td>
<td>1.79698500</td>
<td>4.91861800</td>
</tr>
<tr>
<td>H</td>
<td>-0.07286200</td>
<td>-1.26072400</td>
<td>0.31798600</td>
</tr>
</tbody>
</table>
TS for the CMD activation of the α protons of the H-derivatives

1) **BDTH**

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>-1.56544600</td>
<td>-0.69137900</td>
<td>-0.22769700</td>
</tr>
<tr>
<td>C</td>
<td>0.93388300</td>
<td>-0.37495000</td>
<td>-3.72704600</td>
</tr>
<tr>
<td>C</td>
<td>-0.04639500</td>
<td>-0.16027900</td>
<td>-2.75800200</td>
</tr>
<tr>
<td>C</td>
<td>-0.12475600</td>
<td>-0.98189200</td>
<td>-1.63370500</td>
</tr>
<tr>
<td>C</td>
<td>0.79731400</td>
<td>-2.02141700</td>
<td>-1.49729300</td>
</tr>
<tr>
<td>C</td>
<td>1.77958500</td>
<td>-2.23389100</td>
<td>-2.46501800</td>
</tr>
<tr>
<td>C</td>
<td>1.84910000</td>
<td>-1.41304200</td>
<td>-3.58613200</td>
</tr>
<tr>
<td>O</td>
<td>-3.20980300</td>
<td>0.06965200</td>
<td>2.36979500</td>
</tr>
<tr>
<td>C</td>
<td>-3.01755000</td>
<td>0.06965200</td>
<td>2.36979500</td>
</tr>
<tr>
<td>P</td>
<td>-2.90047300</td>
<td>-2.35463900</td>
<td>-1.25387800</td>
</tr>
<tr>
<td>O</td>
<td>-1.94233400</td>
<td>0.69103500</td>
<td>2.66277100</td>
</tr>
<tr>
<td>H</td>
<td>-0.73597900</td>
<td>0.66608500</td>
<td>-2.88010400</td>
</tr>
<tr>
<td>H</td>
<td>2.49149600</td>
<td>-3.04207400</td>
<td>-2.33764900</td>
</tr>
<tr>
<td>H</td>
<td>2.61177800</td>
<td>-1.57662300</td>
<td>-4.33791100</td>
</tr>
<tr>
<td>H</td>
<td>0.98284600</td>
<td>0.27790600</td>
<td>-4.59147800</td>
</tr>
<tr>
<td>H</td>
<td>0.76839200</td>
<td>-2.67086900</td>
<td>-0.62918800</td>
</tr>
<tr>
<td>C</td>
<td>-4.11318500</td>
<td>0.10036800</td>
<td>3.40994700</td>
</tr>
<tr>
<td>H</td>
<td>-4.51714500</td>
<td>1.11344300</td>
<td>3.46570400</td>
</tr>
<tr>
<td>H</td>
<td>-4.91080900</td>
<td>-0.59249400</td>
<td>3.15238500</td>
</tr>
<tr>
<td>H</td>
<td>-3.70129800</td>
<td>-0.14000600</td>
<td>4.39015200</td>
</tr>
<tr>
<td>H</td>
<td>-1.18233200</td>
<td>0.71933900</td>
<td>1.69173400</td>
</tr>
<tr>
<td>C</td>
<td>-2.49612700</td>
<td>-3.00559500</td>
<td>-2.93033800</td>
</tr>
<tr>
<td>H</td>
<td>-3.23197500</td>
<td>-3.74898000</td>
<td>-3.24299900</td>
</tr>
<tr>
<td>H</td>
<td>-2.48261100</td>
<td>-2.18280200</td>
<td>-3.64466000</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H</td>
<td>-1.503</td>
<td>-3.453</td>
<td>-2.919</td>
</tr>
<tr>
<td>C</td>
<td>-3.026</td>
<td>-3.881</td>
<td>-0.219</td>
</tr>
<tr>
<td>H</td>
<td>-3.729</td>
<td>-4.596</td>
<td>-0.652</td>
</tr>
<tr>
<td>H</td>
<td>-2.044</td>
<td>-4.347</td>
<td>-0.14</td>
</tr>
<tr>
<td>H</td>
<td>-3.359</td>
<td>-3.601</td>
<td>0.779</td>
</tr>
<tr>
<td>C</td>
<td>-4.657</td>
<td>-1.808</td>
<td>-1.413</td>
</tr>
<tr>
<td>H</td>
<td>-5.297</td>
<td>-2.627</td>
<td>-1.749</td>
</tr>
<tr>
<td>H</td>
<td>-4.994</td>
<td>-1.443</td>
<td>-0.444</td>
</tr>
<tr>
<td>H</td>
<td>-4.716</td>
<td>-0.989</td>
<td>-2.131</td>
</tr>
<tr>
<td>C</td>
<td>-0.293</td>
<td>0.931</td>
<td>0.643</td>
</tr>
<tr>
<td>C</td>
<td>1.031</td>
<td>0.752</td>
<td>0.958</td>
</tr>
<tr>
<td>S</td>
<td>-0.496</td>
<td>2.523</td>
<td>-0.128</td>
</tr>
<tr>
<td>C</td>
<td>1.916</td>
<td>1.823</td>
<td>0.618</td>
</tr>
<tr>
<td>H</td>
<td>1.374</td>
<td>0.149</td>
<td>1.449</td>
</tr>
<tr>
<td>C</td>
<td>1.222</td>
<td>2.899</td>
<td>-0.002</td>
</tr>
<tr>
<td>C</td>
<td>3.306</td>
<td>1.898</td>
<td>0.837</td>
</tr>
<tr>
<td>C</td>
<td>1.847</td>
<td>4.093</td>
<td>-0.424</td>
</tr>
<tr>
<td>C</td>
<td>3.927</td>
<td>3.077</td>
<td>0.398</td>
</tr>
<tr>
<td>C</td>
<td>4.065</td>
<td>0.769</td>
<td>1.481</td>
</tr>
<tr>
<td>C</td>
<td>3.234</td>
<td>4.138</td>
<td>-0.221</td>
</tr>
<tr>
<td>C</td>
<td>1.078</td>
<td>5.185</td>
<td>-1.086</td>
</tr>
<tr>
<td>S</td>
<td>5.659</td>
<td>3.413</td>
<td>0.524</td>
</tr>
<tr>
<td>H</td>
<td>3.518</td>
<td>0.357</td>
<td>2.330</td>
</tr>
<tr>
<td>H</td>
<td>4.236</td>
<td>0.046</td>
<td>0.772</td>
</tr>
<tr>
<td>H</td>
<td>5.039</td>
<td>1.099</td>
<td>1.845</td>
</tr>
<tr>
<td>C</td>
<td>4.128</td>
<td>5.212</td>
<td>-0.569</td>
</tr>
<tr>
<td>H</td>
<td>0.048</td>
<td>5.213</td>
<td>0.727</td>
</tr>
<tr>
<td>H</td>
<td>1.527</td>
<td>6.155</td>
<td>0.889</td>
</tr>
<tr>
<td>H</td>
<td>1.042</td>
<td>5.047</td>
<td>2.171</td>
</tr>
<tr>
<td>C</td>
<td>5.416</td>
<td>4.973</td>
<td>-0.238</td>
</tr>
<tr>
<td>H</td>
<td>3.811</td>
<td>6.125</td>
<td>-1.053</td>
</tr>
<tr>
<td>H</td>
<td>6.266</td>
<td>5.618</td>
<td>-0.394</td>
</tr>
<tr>
<td>Atm</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Pd</td>
<td>-1.61700300</td>
<td>-0.59515000</td>
<td>-0.24947900</td>
</tr>
<tr>
<td>C</td>
<td>0.86030500</td>
<td>-0.15192200</td>
<td>-3.75246900</td>
</tr>
<tr>
<td>C</td>
<td>-0.11840600</td>
<td>0.02609900</td>
<td>-2.77446500</td>
</tr>
<tr>
<td>C</td>
<td>-0.19724000</td>
<td>0.08127000</td>
<td>-1.68500500</td>
</tr>
<tr>
<td>C</td>
<td>0.71994700</td>
<td>-1.88947200</td>
<td>-1.59240800</td>
</tr>
<tr>
<td>C</td>
<td>1.69939800</td>
<td>-2.06577900</td>
<td>-2.56998400</td>
</tr>
<tr>
<td>C</td>
<td>1.77099000</td>
<td>-1.19890300</td>
<td>-3.65549800</td>
</tr>
<tr>
<td>O</td>
<td>-3.22795000</td>
<td>-0.50134000</td>
<td>1.30030900</td>
</tr>
<tr>
<td>C</td>
<td>-3.02975500</td>
<td>0.05541500</td>
<td>2.40706800</td>
</tr>
<tr>
<td>P</td>
<td>-2.95086500</td>
<td>-2.20254800</td>
<td>-1.35535700</td>
</tr>
<tr>
<td>O</td>
<td>-1.95655300</td>
<td>0.66993400</td>
<td>2.71953800</td>
</tr>
<tr>
<td>H</td>
<td>-0.80828900</td>
<td>0.85632200</td>
<td>-2.86652800</td>
</tr>
<tr>
<td>H</td>
<td>2.40950400</td>
<td>-2.87980400</td>
<td>-2.47594900</td>
</tr>
<tr>
<td>H</td>
<td>2.53273500</td>
<td>-1.33559000</td>
<td>-4.41381800</td>
</tr>
<tr>
<td>H</td>
<td>0.91082400</td>
<td>0.53623100</td>
<td>-4.58881000</td>
</tr>
<tr>
<td>H</td>
<td>0.69197900</td>
<td>-2.57215600</td>
<td>-0.75027800</td>
</tr>
<tr>
<td>C</td>
<td>-4.11805500</td>
<td>0.03140400</td>
<td>3.45500100</td>
</tr>
<tr>
<td>H</td>
<td>-3.69580300</td>
<td>-0.23906800</td>
<td>4.42277400</td>
</tr>
<tr>
<td>H</td>
<td>-4.53629200</td>
<td>1.03571000</td>
<td>3.55077700</td>
</tr>
<tr>
<td>H</td>
<td>-4.90786600</td>
<td>-0.66253100</td>
<td>3.17707700</td>
</tr>
<tr>
<td>H</td>
<td>-1.19198500</td>
<td>0.73249200</td>
<td>1.74705000</td>
</tr>
<tr>
<td>C</td>
<td>-2.68369700</td>
<td>-2.58645700</td>
<td>-3.13807000</td>
</tr>
<tr>
<td>H</td>
<td>-3.39488500</td>
<td>-3.34178800</td>
<td>-3.47791500</td>
</tr>
<tr>
<td>H</td>
<td>-2.80969600</td>
<td>-1.67867700</td>
<td>-3.72756400</td>
</tr>
<tr>
<td>H</td>
<td>-1.66632300</td>
<td>-2.94519300</td>
<td>-3.28689000</td>
</tr>
<tr>
<td>C</td>
<td>-2.85593500</td>
<td>-3.85954400</td>
<td>-0.54391000</td>
</tr>
<tr>
<td>H</td>
<td>-3.54675600</td>
<td>-4.56636400</td>
<td>-1.00830800</td>
</tr>
<tr>
<td>H</td>
<td>-1.83967200</td>
<td>-4.24495200</td>
<td>-0.62679800</td>
</tr>
<tr>
<td>H</td>
<td>-3.10151100</td>
<td>-3.75309300</td>
<td>0.51242600</td>
</tr>
<tr>
<td>C</td>
<td>-4.74608200</td>
<td>-1.78420300</td>
<td>-1.26606300</td>
</tr>
<tr>
<td>H</td>
<td>-5.36040400</td>
<td>-2.60658300</td>
<td>-1.63819700</td>
</tr>
<tr>
<td>H</td>
<td>-4.99871700</td>
<td>-1.56303000</td>
<td>-0.23016900</td>
</tr>
<tr>
<td>H</td>
<td>-4.93797600</td>
<td>-0.89286600</td>
<td>-1.86383500</td>
</tr>
<tr>
<td>C</td>
<td>-0.30293800</td>
<td>0.95370900</td>
<td>0.71414800</td>
</tr>
<tr>
<td>C</td>
<td>1.03613700</td>
<td>0.72009600</td>
<td>0.98403300</td>
</tr>
<tr>
<td>S</td>
<td>-0.38896000</td>
<td>2.56494300</td>
<td>0.01366200</td>
</tr>
<tr>
<td>H</td>
<td>1.39894200</td>
<td>-0.18960700</td>
<td>1.44451600</td>
</tr>
<tr>
<td>C</td>
<td>1.34752800</td>
<td>-2.72623000</td>
<td>0.14745500</td>
</tr>
<tr>
<td>C</td>
<td>2.05905000</td>
<td>3.90971500</td>
<td>-0.28188400</td>
</tr>
<tr>
<td>S</td>
<td>3.81038400</td>
<td>4.02711100</td>
<td>-0.08655700</td>
</tr>
<tr>
<td>C</td>
<td>2.43863900</td>
<td>5.91343200</td>
<td>-1.11861800</td>
</tr>
<tr>
<td>Atom</td>
<td>X Coordinate</td>
<td>Y Coordinate</td>
<td>Z Coordinate</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C</td>
<td>3.72764400</td>
<td>5.60515200</td>
<td>-0.79963600</td>
</tr>
<tr>
<td>H</td>
<td>2.11793800</td>
<td>6.83897100</td>
<td>-1.57486800</td>
</tr>
<tr>
<td>H</td>
<td>4.61303100</td>
<td>6.20347200</td>
<td>-0.94042500</td>
</tr>
<tr>
<td>N</td>
<td>1.94123700</td>
<td>1.68249400</td>
<td>0.67708200</td>
</tr>
<tr>
<td>N</td>
<td>1.50727400</td>
<td>4.95832000</td>
<td>-0.82580000</td>
</tr>
</tbody>
</table>

3) DPPH

<table>
<thead>
<tr>
<th>Atom</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
<th>Z Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>-1.24479000</td>
<td>-0.12469100</td>
<td>-0.05795200</td>
</tr>
<tr>
<td>C</td>
<td>-0.03036500</td>
<td>3.69522700</td>
<td>1.52647800</td>
</tr>
<tr>
<td>C</td>
<td>-0.58445300</td>
<td>2.42576100</td>
<td>1.36262800</td>
</tr>
<tr>
<td>C</td>
<td>-0.46854900</td>
<td>1.74933100</td>
<td>0.14731800</td>
</tr>
<tr>
<td>C</td>
<td>0.21016400</td>
<td>2.36865400</td>
<td>-0.90247300</td>
</tr>
<tr>
<td>C</td>
<td>0.76292100</td>
<td>3.63926700</td>
<td>-0.73914700</td>
</tr>
<tr>
<td>C</td>
<td>0.64257000</td>
<td>4.30799800</td>
<td>0.47446700</td>
</tr>
<tr>
<td>O</td>
<td>-2.21576600</td>
<td>-2.12246500</td>
<td>-0.24863700</td>
</tr>
<tr>
<td>C</td>
<td>-1.69395800</td>
<td>-3.14374000</td>
<td>0.25880500</td>
</tr>
<tr>
<td>P</td>
<td>-3.27700800</td>
<td>0.91761100</td>
<td>-0.67239300</td>
</tr>
<tr>
<td>O</td>
<td>-0.55041200</td>
<td>-3.16011000</td>
<td>0.82506400</td>
</tr>
<tr>
<td>H</td>
<td>-1.09452800</td>
<td>1.96353000</td>
<td>2.20037800</td>
</tr>
<tr>
<td>H</td>
<td>1.29314300</td>
<td>4.10200500</td>
<td>-1.56397400</td>
</tr>
<tr>
<td>H</td>
<td>1.07554500</td>
<td>5.29267500</td>
<td>0.60192800</td>
</tr>
<tr>
<td>H</td>
<td>-0.12175000</td>
<td>4.20065600</td>
<td>2.48134800</td>
</tr>
<tr>
<td>H</td>
<td>0.32704800</td>
<td>1.86199300</td>
<td>-1.85309400</td>
</tr>
<tr>
<td>C</td>
<td>-2.43526500</td>
<td>-4.45942900</td>
<td>0.20802900</td>
</tr>
<tr>
<td>H</td>
<td>-2.50949800</td>
<td>-4.87610000</td>
<td>1.21331600</td>
</tr>
<tr>
<td>H</td>
<td>-3.42654300</td>
<td>-4.32840700</td>
<td>-0.21920200</td>
</tr>
<tr>
<td>H</td>
<td>-1.86470500</td>
<td>-5.16819600</td>
<td>-0.39501000</td>
</tr>
<tr>
<td>C</td>
<td>0.79408700</td>
<td>-0.94904100</td>
<td>0.45493700</td>
</tr>
<tr>
<td>C</td>
<td>3.25911200</td>
<td>-0.51500900</td>
<td>-0.07498300</td>
</tr>
<tr>
<td>H</td>
<td>0.01386000</td>
<td>-2.06597000</td>
<td>0.66922500</td>
</tr>
<tr>
<td>S</td>
<td>1.84092700</td>
<td>-1.09338000</td>
<td>-0.94149700</td>
</tr>
<tr>
<td>C</td>
<td>2.90928100</td>
<td>-0.23759100</td>
<td>1.24122400</td>
</tr>
<tr>
<td>C</td>
<td>1.55735900</td>
<td>-0.48068200</td>
<td>1.51784100</td>
</tr>
<tr>
<td>C</td>
<td>-3.20470800</td>
<td>2.05572400</td>
<td>-2.12272800</td>
</tr>
<tr>
<td>H</td>
<td>-4.19242200</td>
<td>2.46520800</td>
<td>-2.34322500</td>
</tr>
<tr>
<td>H</td>
<td>-2.51063500</td>
<td>2.86769000</td>
<td>-1.91080700</td>
</tr>
<tr>
<td>H</td>
<td>-2.84024600</td>
<td>1.50941800</td>
<td>-2.99297800</td>
</tr>
<tr>
<td>C</td>
<td>-4.59016200</td>
<td>-0.28906200</td>
<td>-1.14544300</td>
</tr>
<tr>
<td>H</td>
<td>-5.51204300</td>
<td>0.22840200</td>
<td>-1.41786900</td>
</tr>
<tr>
<td>H</td>
<td>-4.24102800</td>
<td>-0.89039800</td>
<td>-1.98369200</td>
</tr>
<tr>
<td>H</td>
<td>-4.77369900</td>
<td>-0.96350400</td>
<td>-0.31078700</td>
</tr>
<tr>
<td>C</td>
<td>-4.09312100</td>
<td>1.94346600</td>
<td>0.62701300</td>
</tr>
</tbody>
</table>
H -5.03619400 2.35341300 0.26029700
H -4.28662400 1.32799500 1.50582800
H -3.42918100 2.75781600 0.91377500
H 3.62928400 0.12295800 1.96489800
H 1.13260300 -0.32662200 2.50141800
C 4.58251500 -0.36031700 -0.61027100
C 5.71553600 0.07666100 0.06882300
C 6.36257200 -0.36491100 -2.13447100
C 6.81928900 0.08338800 -0.83554100
C 6.18958400 0.52260100 1.36310400
C 7.93122800 0.50530800 -0.16687200
H 8.94496200 0.63776400 -0.51263400
O 5.65603800 0.69104500 2.45066100
O 6.92129500 -0.52230400 -3.20178100
C 4.15140800 -1.10547300 -3.02685500
H 3.73266100 -2.09036100 -2.81615600
H 3.34293900 -0.41157700 -3.26077900
H 4.81544900 -1.17926000 -3.88640400
C 8.47571500 1.24165000 2.17876600
H 7.88292000 1.34494700 3.08564700
H 9.28164600 0.52722400 2.35988000
H 8.90533500 2.21250700 1.92237000
N 4.96366100 -0.62464400 -1.92533900
N 7.58694100 0.77171400 1.13529500

4) FTVTH

Pd -1.60136200 -0.65632100 -0.20311000
C 0.74808300 -0.17249700 -3.78763500
C -0.24295500 -0.05937400 -2.81190700
C -0.17211600 -0.81414300 -1.64107900
C 0.90486200 -1.68296700 -1.46177800
C 1.89532500 -1.79448600 -2.43793100
C 1.81797300 -1.04278300 -3.60606100
O -3.22072600 -0.65432300 1.33915300
C -3.13107800 0.02165700 2.39338500
P -2.79636000 -2.42957800 -1.19936300
O -2.16960600 0.81408900 2.66128800
H -1.06111600 0.63337900 -2.97000900
H 2.73049400 -2.46714900 -2.27813400
H 2.58783100 -1.12828800 -4.36338100

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.68164500</td>
<td>0.42626900</td>
<td>-4.68918100</td>
</tr>
<tr>
<td>H</td>
<td>0.99456900</td>
<td>-2.26492300</td>
<td>-0.55181400</td>
</tr>
<tr>
<td>C</td>
<td>-4.21852900</td>
<td>-0.08766600</td>
<td>3.43744700</td>
</tr>
<tr>
<td>H</td>
<td>-4.64206500</td>
<td>0.90017300</td>
<td>3.62463700</td>
</tr>
<tr>
<td>H</td>
<td>-4.99900300</td>
<td>-0.77224300</td>
<td>3.11423400</td>
</tr>
<tr>
<td>H</td>
<td>-3.78301900</td>
<td>-0.43605100</td>
<td>4.37542600</td>
</tr>
<tr>
<td>H</td>
<td>-1.35164700</td>
<td>0.86233000</td>
<td>1.71873600</td>
</tr>
<tr>
<td>C</td>
<td>-2.30070700</td>
<td>-3.13190000</td>
<td>-2.82852400</td>
</tr>
<tr>
<td>H</td>
<td>-2.97886000</td>
<td>-3.93509500</td>
<td>-3.12288100</td>
</tr>
<tr>
<td>H</td>
<td>-2.31486700</td>
<td>-2.34628400</td>
<td>-3.58336000</td>
</tr>
<tr>
<td>H</td>
<td>-1.28291200</td>
<td>-3.51478900</td>
<td>-2.76536500</td>
</tr>
<tr>
<td>C</td>
<td>-2.85609800</td>
<td>-3.90239400</td>
<td>-0.87729000</td>
</tr>
<tr>
<td>H</td>
<td>-3.50544700</td>
<td>-4.67954500</td>
<td>-0.49619500</td>
</tr>
<tr>
<td>H</td>
<td>-1.85039000</td>
<td>-4.30360000</td>
<td>0.03828100</td>
</tr>
<tr>
<td>H</td>
<td>-3.22929600</td>
<td>-3.58818900</td>
<td>0.88644300</td>
</tr>
<tr>
<td>C</td>
<td>-4.57556900</td>
<td>-1.99574100</td>
<td>-1.42798500</td>
</tr>
<tr>
<td>H</td>
<td>-5.15556700</td>
<td>-2.86540200</td>
<td>-1.74385400</td>
</tr>
<tr>
<td>H</td>
<td>-4.96116700</td>
<td>-1.61524300</td>
<td>-0.48299900</td>
</tr>
<tr>
<td>H</td>
<td>-4.66420200</td>
<td>-1.12001000</td>
<td>-2.18056200</td>
</tr>
<tr>
<td>C</td>
<td>0.89480800</td>
<td>0.85632800</td>
<td>1.01126300</td>
</tr>
<tr>
<td>S</td>
<td>-0.57432700</td>
<td>2.60640300</td>
<td>-0.07717600</td>
</tr>
<tr>
<td>C</td>
<td>1.76438200</td>
<td>1.88999900</td>
<td>0.62531600</td>
</tr>
<tr>
<td>C</td>
<td>1.14267100</td>
<td>2.94971100</td>
<td>0.00351600</td>
</tr>
<tr>
<td>F</td>
<td>1.37213700</td>
<td>-0.22909700</td>
<td>1.64068900</td>
</tr>
<tr>
<td>F</td>
<td>3.08754200</td>
<td>1.84254700</td>
<td>0.85515000</td>
</tr>
<tr>
<td>C</td>
<td>1.79075400</td>
<td>4.13599800</td>
<td>-0.47843500</td>
</tr>
<tr>
<td>H</td>
<td>2.86198300</td>
<td>4.16490100</td>
<td>-0.30113500</td>
</tr>
<tr>
<td>C</td>
<td>1.18857800</td>
<td>5.16800500</td>
<td>-1.10447600</td>
</tr>
<tr>
<td>H</td>
<td>0.11918300</td>
<td>5.13265600</td>
<td>-1.28795100</td>
</tr>
<tr>
<td>C</td>
<td>1.82797400</td>
<td>6.36347300</td>
<td>-1.57853700</td>
</tr>
<tr>
<td>C</td>
<td>1.22409000</td>
<td>7.40596800</td>
<td>-2.23226600</td>
</tr>
<tr>
<td>S</td>
<td>3.54449000</td>
<td>6.72441400</td>
<td>-1.40000000</td>
</tr>
<tr>
<td>C</td>
<td>2.09565200</td>
<td>8.46633100</td>
<td>-2.58537200</td>
</tr>
<tr>
<td>C</td>
<td>3.38161000</td>
<td>8.25824300</td>
<td>-2.21065500</td>
</tr>
<tr>
<td>H</td>
<td>4.23023100</td>
<td>8.90402800</td>
<td>-2.35878500</td>
</tr>
<tr>
<td>F</td>
<td>1.65300000</td>
<td>9.55448700</td>
<td>-3.22854200</td>
</tr>
<tr>
<td>F</td>
<td>-0.08344300</td>
<td>7.44299200</td>
<td>-2.52560700</td>
</tr>
</tbody>
</table>
5) NDPPH

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>-1.07281300</td>
<td>0.12461100</td>
<td>-0.11817400</td>
</tr>
<tr>
<td>C</td>
<td>-0.81024800</td>
<td>4.35432600</td>
<td>0.60472800</td>
</tr>
<tr>
<td>C</td>
<td>-1.11475500</td>
<td>2.99474600</td>
<td>0.68075500</td>
</tr>
<tr>
<td>C</td>
<td>-0.61255400</td>
<td>2.09992800</td>
<td>-0.26604200</td>
</tr>
<tr>
<td>C</td>
<td>0.20119900</td>
<td>2.58355700</td>
<td>-1.28963100</td>
</tr>
<tr>
<td>C</td>
<td>0.50158800</td>
<td>3.94406900</td>
<td>-1.36442600</td>
</tr>
<tr>
<td>O</td>
<td>0.00469700</td>
<td>4.83455300</td>
<td>-0.42274800</td>
</tr>
<tr>
<td>O</td>
<td>-1.18606000</td>
<td>-2.76099600</td>
<td>0.92560500</td>
</tr>
<tr>
<td>C</td>
<td>-1.18606000</td>
<td>-2.76099600</td>
<td>-0.11817400</td>
</tr>
<tr>
<td>C</td>
<td>-1.11475500</td>
<td>2.99474600</td>
<td>0.68075500</td>
</tr>
<tr>
<td>C</td>
<td>-0.61255400</td>
<td>2.09992800</td>
<td>-0.26604200</td>
</tr>
<tr>
<td>C</td>
<td>0.20119900</td>
<td>2.58355700</td>
<td>-1.28963100</td>
</tr>
<tr>
<td>C</td>
<td>0.50158800</td>
<td>3.94406900</td>
<td>-1.36442600</td>
</tr>
<tr>
<td>C</td>
<td>0.00469700</td>
<td>4.83455300</td>
<td>-0.42274800</td>
</tr>
<tr>
<td>C</td>
<td>-1.18606000</td>
<td>-2.76099600</td>
<td>0.92560500</td>
</tr>
<tr>
<td>C</td>
<td>-1.11475500</td>
<td>2.99474600</td>
<td>0.68075500</td>
</tr>
<tr>
<td>C</td>
<td>-0.61255400</td>
<td>2.09992800</td>
<td>-0.26604200</td>
</tr>
<tr>
<td>C</td>
<td>0.20119900</td>
<td>2.58355700</td>
<td>-1.28963100</td>
</tr>
<tr>
<td>C</td>
<td>0.50158800</td>
<td>3.94406900</td>
<td>-1.36442600</td>
</tr>
<tr>
<td>O</td>
<td>0.00469700</td>
<td>4.83455300</td>
<td>-0.42274800</td>
</tr>
<tr>
<td>O</td>
<td>-1.18606000</td>
<td>-2.76099600</td>
<td>0.92560500</td>
</tr>
<tr>
<td>Atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C</td>
<td>5.88819800</td>
<td>0.27494100</td>
<td>0.39425500</td>
</tr>
<tr>
<td>C</td>
<td>6.41226900</td>
<td>0.61195300</td>
<td>-2.28558600</td>
</tr>
<tr>
<td>C</td>
<td>7.25252000</td>
<td>0.29185400</td>
<td>-0.11489500</td>
</tr>
<tr>
<td>C</td>
<td>7.25252000</td>
<td>0.61195300</td>
<td>-2.28558600</td>
</tr>
<tr>
<td>C</td>
<td>7.50904300</td>
<td>0.46545500</td>
<td>-1.50158200</td>
</tr>
<tr>
<td>H</td>
<td>8.51542400</td>
<td>0.48623500</td>
<td>-1.89582300</td>
</tr>
<tr>
<td>N</td>
<td>5.82772600</td>
<td>0.08391200</td>
<td>1.70786700</td>
</tr>
<tr>
<td>N</td>
<td>8.18112800</td>
<td>0.61195300</td>
<td>0.82318300</td>
</tr>
<tr>
<td>S</td>
<td>6.37655700</td>
<td>-0.04578300</td>
<td>2.25328900</td>
</tr>
<tr>
<td>C</td>
<td>1.459394100</td>
<td>0.31980100</td>
<td>-5.43544300</td>
</tr>
<tr>
<td>H</td>
<td>5.45877500</td>
<td>0.85566000</td>
<td>-3.75476700</td>
</tr>
<tr>
<td>H</td>
<td>0.114119600</td>
<td>0.95120900</td>
<td>2.48276000</td>
</tr>
</tbody>
</table>

6) OBDTH

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>-1.53217900</td>
<td>-0.68699800</td>
<td>-0.20642100</td>
</tr>
<tr>
<td>C</td>
<td>1.01976900</td>
<td>-0.37917300</td>
<td>-3.66903000</td>
</tr>
<tr>
<td>C</td>
<td>0.02761300</td>
<td>-0.15928100</td>
<td>-2.71330200</td>
</tr>
<tr>
<td>C</td>
<td>-0.07823000</td>
<td>-0.98835300</td>
<td>-1.59674200</td>
</tr>
<tr>
<td>C</td>
<td>0.82805700</td>
<td>-2.04134400</td>
<td>-1.45470700</td>
</tr>
<tr>
<td>C</td>
<td>1.82136700</td>
<td>-2.26000100</td>
<td>-2.41019000</td>
</tr>
<tr>
<td>C</td>
<td>1.91859600</td>
<td>-1.43090500</td>
<td>-3.52338800</td>
</tr>
<tr>
<td>O</td>
<td>-3.18763900</td>
<td>-0.52183000</td>
<td>1.29403800</td>
</tr>
<tr>
<td>C</td>
<td>-3.00629400</td>
<td>0.08945700</td>
<td>2.37395500</td>
</tr>
<tr>
<td>P</td>
<td>-2.86405000</td>
<td>-2.34355600</td>
<td>-1.24450600</td>
</tr>
<tr>
<td>O</td>
<td>-1.93571800</td>
<td>0.71643500</td>
<td>2.67208600</td>
</tr>
<tr>
<td>H</td>
<td>-0.64832900</td>
<td>0.67762200</td>
<td>-2.83922300</td>
</tr>
<tr>
<td>H</td>
<td>2.51830200</td>
<td>-3.08092100</td>
<td>-2.28064400</td>
</tr>
<tr>
<td>H</td>
<td>2.68903000</td>
<td>-1.59963200</td>
<td>-4.26607200</td>
</tr>
<tr>
<td>H</td>
<td>1.09049100</td>
<td>0.28046700</td>
<td>-4.52661100</td>
</tr>
<tr>
<td>H</td>
<td>0.77656400</td>
<td>-2.69800300</td>
<td>-0.59299000</td>
</tr>
<tr>
<td>C</td>
<td>-4.10991900</td>
<td>0.12128900</td>
<td>3.40532400</td>
</tr>
<tr>
<td>H</td>
<td>-3.70602000</td>
<td>-0.12348100</td>
<td>4.38781000</td>
</tr>
<tr>
<td>H</td>
<td>-4.51079000</td>
<td>1.13552400</td>
<td>3.46143000</td>
</tr>
<tr>
<td>H</td>
<td>-4.90760000</td>
<td>-0.56846900</td>
<td>3.13988900</td>
</tr>
<tr>
<td>H</td>
<td>-1.16737600</td>
<td>0.73911600</td>
<td>1.70973600</td>
</tr>
<tr>
<td>C</td>
<td>-2.45020200</td>
<td>-2.99109900</td>
<td>-2.91978700</td>
</tr>
</tbody>
</table>
7) ThioH

Pd -1.53004100 -0.66404200 -0.24627800
C 0.94829400 -0.36486500 -3.76532000
C -0.02564900 -0.14397500 -2.79127400
C -0.08809800 -0.94652400 -1.65129200
C 0.84961500 -1.97143300 -1.50559800
C 1.82584100 -2.19057700 -2.47767200
C 1.87683500 -1.38981300 -3.61432900
O -3.16981200 -0.50181200 1.28400800
C -2.99486700 0.11616500 2.35819900
P -2.86843000 -2.35307600 -1.24943300
O -1.93005800 0.75934500 2.65455000
H -0.72692000 0.67082700 -2.92434200
H 2.54811400 -2.98815700 -2.34149800
H 2.63416500 -1.55933100 -4.37035100
H 0.98096900 0.27188900 -4.64266300
H 0.83655700 -2.60467500 -0.62530300
C -4.09508600 0.14239100 3.39354500
H -3.68714500 -0.10356600 4.37419700
H -4.49957200 1.15493100 3.45381700
H -4.89074800 -0.55009900 3.12915300
H -1.16971000 0.77803500 1.71648700
C -2.46554200 -3.02018300 -2.92107500
H -3.19160400 -3.77800000 -3.22186800
H -2.46718100 -2.20602500 -3.64547500
H -1.46583200 -3.45277600 -2.90975800
C -2.97991700 -3.87352700 -0.20345900
H -3.67747300 -4.59898300 -0.62769500
H -1.99324100 -4.33008500 -0.12214700
H -3.31270800 -3.58934100 0.79453700
C -4.63304700 -1.83090400 -1.41095600
H -5.26473600 -2.66013500 -1.73646100
H -4.97302900 -1.46050000 -0.44463000
H -4.70406000 -1.01947200 -2.13571000
C -0.26914600 0.92418900 0.62790600
C 1.06648700 0.75556300 0.95882400
S -0.41154700 2.51426700 -0.12633300
C 1.94124000 1.82507200 0.64744200
H 1.41889900 -0.14597800 1.44727800
C 1.27977100 2.87203800 0.04098300
C 3.41595600 1.82695400 0.94455800
H 3.70693400 2.68867100 1.55225200
H 3.70236300 0.92680400 1.48945900
H 4.01264500 1.86156000 0.02825500
C 1.86741000 4.16735800 -0.42422000
H 2.39283100 4.67577500 0.38975800
H 2.59370300 4.00488700 -1.22674200
H 1.10252500 4.84610700 -0.80172500
8) TVTH
Pd -1.40794000 -0.76238200 -0.24114900
C 0.38947500 0.12912300 -4.06127200
C -0.40187600 0.16729000 -2.91299800
C -0.24053900 -0.78542500 -1.90685600
C 0.73201000 -1.77386300 -2.07084400
C 1.52474400 -1.81065000 -3.21808600
C 1.35381300 -0.86064700 -4.22009100
O -2.74461600 -0.89996500 1.56284200
C -2.38402200 0.42550500 2.66417900
C -2.86563000 -2.34584500 -1.23628600
O -1.30162300 0.23005300 2.84664300
H -1.13357400 0.95868700 -2.80503400
H 2.27906300 2.58271300 -3.32350000
H 1.96978200 -0.88747600 -5.11089400
H 0.25248400 0.88182000 -4.82976700
H 0.89126200 -2.52018700 -1.30025700
C -3.26305600 -0.60474300 3.87977200
H -3.66416700 0.36749700 4.17321500
H -4.08292700 -1.28663500 3.66694600
H -2.66780300 -0.97555000 4.71460400
H -0.73060100 0.41883700 -1.79399900
H -2.78939800 -3.98996100 -0.39592400
H -3.54866700 -4.67154700 -0.78529000
H -1.80263800 -4.42848900 -0.54580000
H -2.94446600 -3.84328600 0.67265100
H -4.63303400 -1.85214200 -10.30187000
H -5.30830100 -2.64930900 -1.34803600
H -4.80264200 -1.61593500 0.01951900
H -4.82932600 -0.95752800 -1.62156700
C -2.73941500 -2.77177600 -3.02536600
H -3.49690800 -3.50730500 -3.30288700
H -2.87155200 -1.86916600 -3.62129000
H -1.74680600 0.31673610 -3.23711100
C -0.04367000 0.77361500 0.61002100
9) 1,2,4,5-tetrafluorobenzene

Pd -1.24960700 -0.10701600 -0.17512300
C 0.13231200 3.54807400 1.63421200
C -0.45857900 2.30413900 1.40981600
C -0.42904400 1.72670500 0.14037400
C 0.19497000 2.41251200 -0.90174200
C 0.78511400 3.65651100 -0.67530300
C 0.75241000 4.22953800 0.59188300
O -2.32352000 -2.01468000 -0.56456300
C -1.74192900 -3.11902000 -0.40932000
P -3.28918200 0.92156100 -0.69005800
O -0.53270600 -3.24478200 -0.03717000
H -0.92613600 1.78559400 2.23900000
H 1.27398700 4.17321400 -1.49353200
H 1.21126000 5.19506700 0.76691800
H 0.10932400 3.97948500 2.62858300
H 0.24067400 1.98080800 -1.89509200
C -2.50148700 -4.39651700 -0.68113000
H -2.44035400 -5.04967400 0.19013800
H -3.54113900 -4.18684100 -0.92082300
H -2.02980500 -4.92124200 -1.51393800
C 0.81967700 -1.04380700 0.34825800
C 3.44859700 -0.24164100 1.02539200
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.01689300</td>
<td>-2.11609000</td>
<td>0.13021300</td>
</tr>
<tr>
<td>C</td>
<td>2.49858500</td>
<td>-0.45583800</td>
<td>2.01010900</td>
</tr>
<tr>
<td>C</td>
<td>1.21575800</td>
<td>-0.85150600</td>
<td>1.66747000</td>
</tr>
<tr>
<td>C</td>
<td>-3.86594100</td>
<td>0.41409200</td>
<td>-2.36651400</td>
</tr>
<tr>
<td>H</td>
<td>-4.88002300</td>
<td>0.77094200</td>
<td>-2.55827900</td>
</tr>
<tr>
<td>H</td>
<td>-3.19223700</td>
<td>0.82038600</td>
<td>-3.12099200</td>
</tr>
<tr>
<td>H</td>
<td>-3.83880700</td>
<td>-0.67326200</td>
<td>-2.42468400</td>
</tr>
<tr>
<td>C</td>
<td>-4.62552300</td>
<td>0.32298400</td>
<td>-0.43135800</td>
</tr>
<tr>
<td>H</td>
<td>-5.60099900</td>
<td>0.69557800</td>
<td>0.11212900</td>
</tr>
<tr>
<td>H</td>
<td>-4.62455700</td>
<td>0.76623600</td>
<td>0.41929800</td>
</tr>
<tr>
<td>H</td>
<td>-4.42602700</td>
<td>0.66076800</td>
<td>1.44833900</td>
</tr>
<tr>
<td>C</td>
<td>-3.48445600</td>
<td>2.75197000</td>
<td>-0.68211500</td>
</tr>
<tr>
<td>H</td>
<td>-4.50642300</td>
<td>3.02834400</td>
<td>-0.94838900</td>
</tr>
<tr>
<td>H</td>
<td>-3.24534900</td>
<td>3.13960700</td>
<td>0.30730900</td>
</tr>
<tr>
<td>H</td>
<td>-2.78734900</td>
<td>3.19587700</td>
<td>-1.39165500</td>
</tr>
<tr>
<td>H</td>
<td>4.45037200</td>
<td>0.07275300</td>
<td>1.28355800</td>
</tr>
<tr>
<td>C</td>
<td>1.79762500</td>
<td>-0.83003600</td>
<td>-0.61714400</td>
</tr>
<tr>
<td>C</td>
<td>3.08633700</td>
<td>-0.43401000</td>
<td>-0.29741300</td>
</tr>
<tr>
<td>F</td>
<td>3.99476100</td>
<td>-0.22968400</td>
<td>-1.27150700</td>
</tr>
<tr>
<td>F</td>
<td>1.49546200</td>
<td>-1.00898300</td>
<td>-1.92168100</td>
</tr>
<tr>
<td>F</td>
<td>0.32636300</td>
<td>-1.04902700</td>
<td>2.66463200</td>
</tr>
<tr>
<td>F</td>
<td>2.82918200</td>
<td>-0.27223200</td>
<td>3.30333400</td>
</tr>
</tbody>
</table>

10) TPD

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>-1.19607400</td>
<td>-0.14086800</td>
<td>-0.04913100</td>
</tr>
<tr>
<td>C</td>
<td>0.00449300</td>
<td>3.70694000</td>
<td>1.46625100</td>
</tr>
<tr>
<td>C</td>
<td>-0.53339000</td>
<td>2.42678900</td>
<td>1.32960100</td>
</tr>
<tr>
<td>C</td>
<td>-0.46162700</td>
<td>1.75494700</td>
<td>0.10845900</td>
</tr>
<tr>
<td>C</td>
<td>0.15373000</td>
<td>2.38545200</td>
<td>-0.97323100</td>
</tr>
<tr>
<td>C</td>
<td>0.69123000</td>
<td>3.66573800</td>
<td>-0.83490400</td>
</tr>
<tr>
<td>C</td>
<td>0.61546900</td>
<td>4.33198100</td>
<td>0.38373700</td>
</tr>
<tr>
<td>O</td>
<td>-2.14485700</td>
<td>-2.14243800</td>
<td>-0.18576600</td>
</tr>
<tr>
<td>C</td>
<td>-1.54448600</td>
<td>-3.18482400</td>
<td>0.17810700</td>
</tr>
<tr>
<td>P</td>
<td>-3.26271100</td>
<td>0.85886300</td>
<td>-0.56440400</td>
</tr>
<tr>
<td>O</td>
<td>-0.33261900</td>
<td>-3.21802800</td>
<td>0.56382800</td>
</tr>
<tr>
<td>H</td>
<td>-0.98811500</td>
<td>1.94973900</td>
<td>2.19017100</td>
</tr>
<tr>
<td>H</td>
<td>1.17211600</td>
<td>4.13865500</td>
<td>-1.68384700</td>
</tr>
<tr>
<td>H</td>
<td>1.03392800</td>
<td>5.32537200</td>
<td>0.49064700</td>
</tr>
<tr>
<td>H</td>
<td>-0.05252200</td>
<td>4.21155300</td>
<td>2.42422700</td>
</tr>
<tr>
<td>H</td>
<td>0.23160800</td>
<td>1.88212300</td>
<td>-1.92965400</td>
</tr>
<tr>
<td>C</td>
<td>-2.29208200</td>
<td>-4.49862500</td>
<td>0.18375000</td>
</tr>
<tr>
<td>H</td>
<td>-2.47466100</td>
<td>-4.79282400</td>
<td>1.21960800</td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>H</td>
<td>-3.2426300</td>
<td>-4.40550100</td>
<td>-0.33699200</td>
</tr>
<tr>
<td>H</td>
<td>-1.6807950</td>
<td>-5.27645800</td>
<td>-0.27351800</td>
</tr>
<tr>
<td>C</td>
<td>0.90844200</td>
<td>-0.93184100</td>
<td>0.40682700</td>
</tr>
<tr>
<td>C</td>
<td>3.35298700</td>
<td>-0.25081700</td>
<td>-0.04184800</td>
</tr>
<tr>
<td>H</td>
<td>0.18052700</td>
<td>-2.06082800</td>
<td>0.49552200</td>
</tr>
<tr>
<td>S</td>
<td>2.03699500</td>
<td>-0.91986200</td>
<td>-0.95804900</td>
</tr>
<tr>
<td>C</td>
<td>2.95235100</td>
<td>-0.05680700</td>
<td>1.24499300</td>
</tr>
<tr>
<td>C</td>
<td>1.61036000</td>
<td>-0.43609000</td>
<td>1.48154800</td>
</tr>
<tr>
<td>C</td>
<td>-3.29353500</td>
<td>2.04750400</td>
<td>-1.97457100</td>
</tr>
<tr>
<td>H</td>
<td>-4.30705900</td>
<td>2.41664800</td>
<td>-2.14320200</td>
</tr>
<tr>
<td>H</td>
<td>-2.62990700</td>
<td>2.88392800</td>
<td>-1.76091500</td>
</tr>
<tr>
<td>H</td>
<td>-2.93941300</td>
<td>1.54798800</td>
<td>-2.87659300</td>
</tr>
<tr>
<td>C</td>
<td>-4.54810300</td>
<td>-0.38030600</td>
<td>-1.02350300</td>
</tr>
<tr>
<td>H</td>
<td>-5.50365200</td>
<td>0.11103500</td>
<td>-1.21646800</td>
</tr>
<tr>
<td>H</td>
<td>-4.22487800</td>
<td>-0.92266700</td>
<td>-1.91101100</td>
</tr>
<tr>
<td>H</td>
<td>-4.65169200</td>
<td>-1.10264800</td>
<td>-0.21606700</td>
</tr>
<tr>
<td>C</td>
<td>-4.05033200</td>
<td>1.80353500</td>
<td>0.81024300</td>
</tr>
<tr>
<td>H</td>
<td>-5.02614600</td>
<td>2.18625900</td>
<td>0.50473800</td>
</tr>
<tr>
<td>H</td>
<td>-4.17335000</td>
<td>1.14944000</td>
<td>1.67353000</td>
</tr>
<tr>
<td>H</td>
<td>-3.40603200</td>
<td>2.63435600</td>
<td>1.09407600</td>
</tr>
<tr>
<td>H</td>
<td>4.31332600</td>
<td>-0.05233100</td>
<td>-0.49165400</td>
</tr>
<tr>
<td>C</td>
<td>3.54175000</td>
<td>0.43850600</td>
<td>2.51155300</td>
</tr>
<tr>
<td>C</td>
<td>1.30493300</td>
<td>-0.17594400</td>
<td>2.91235900</td>
</tr>
<tr>
<td>N</td>
<td>2.50463800</td>
<td>0.32839800</td>
<td>3.45566400</td>
</tr>
<tr>
<td>O</td>
<td>4.65056000</td>
<td>0.85551200</td>
<td>2.75452400</td>
</tr>
<tr>
<td>O</td>
<td>0.27799600</td>
<td>-0.32793900</td>
<td>3.53408100</td>
</tr>
<tr>
<td>C</td>
<td>2.65745500</td>
<td>0.72209300</td>
<td>4.84247900</td>
</tr>
<tr>
<td>H</td>
<td>1.72333700</td>
<td>0.50029900</td>
<td>5.35379000</td>
</tr>
<tr>
<td>H</td>
<td>3.47415200</td>
<td>0.16781300</td>
<td>5.30602900</td>
</tr>
<tr>
<td>H</td>
<td>2.87428400</td>
<td>1.78874700</td>
<td>4.91740100</td>
</tr>
</tbody>
</table>
TS for the CMD activation of the β protons of the H-derivatives

![Molecular structure](image)

1) **BDTH**

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>2.06012800</td>
<td>0.44217400</td>
<td>0.15899800</td>
</tr>
<tr>
<td>C</td>
<td>1.75272600</td>
<td>0.08609500</td>
<td>-4.13152100</td>
</tr>
<tr>
<td>C</td>
<td>2.12717000</td>
<td>-0.06644500</td>
<td>-2.79660400</td>
</tr>
<tr>
<td>C</td>
<td>1.50041300</td>
<td>0.67060800</td>
<td>-1.78968700</td>
</tr>
<tr>
<td>C</td>
<td>0.48669200</td>
<td>1.55985500</td>
<td>-2.14797800</td>
</tr>
<tr>
<td>C</td>
<td>0.11155900</td>
<td>1.71329500</td>
<td>-3.48293600</td>
</tr>
<tr>
<td>C</td>
<td>0.74561900</td>
<td>0.98003400</td>
<td>-4.48038000</td>
</tr>
<tr>
<td>O</td>
<td>2.78559800</td>
<td>0.26129700</td>
<td>2.26926100</td>
</tr>
<tr>
<td>C</td>
<td>2.19945900</td>
<td>-0.46258700</td>
<td>3.10329400</td>
</tr>
<tr>
<td>P</td>
<td>3.70436900</td>
<td>2.11177900</td>
<td>-0.23166800</td>
</tr>
<tr>
<td>O</td>
<td>1.16617500</td>
<td>-1.17080300</td>
<td>2.83987400</td>
</tr>
<tr>
<td>H</td>
<td>2.90665100</td>
<td>-0.77842500</td>
<td>-2.55005900</td>
</tr>
<tr>
<td>H</td>
<td>-0.68433200</td>
<td>2.40398700</td>
<td>-3.73809000</td>
</tr>
<tr>
<td>H</td>
<td>0.45213900</td>
<td>1.09713200</td>
<td>-5.51660500</td>
</tr>
<tr>
<td>H</td>
<td>2.24729800</td>
<td>-0.50173600</td>
<td>-4.89690400</td>
</tr>
<tr>
<td>H</td>
<td>-0.03416700</td>
<td>2.13253700</td>
<td>-1.38974900</td>
</tr>
<tr>
<td>C</td>
<td>2.70564100</td>
<td>-0.53344100</td>
<td>4.52436000</td>
</tr>
<tr>
<td>H</td>
<td>3.60135000</td>
<td>0.07083700</td>
<td>4.64490500</td>
</tr>
<tr>
<td>H</td>
<td>1.92643200</td>
<td>-0.18131500</td>
<td>5.20258300</td>
</tr>
<tr>
<td>H</td>
<td>2.91584700</td>
<td>-1.57173100</td>
<td>4.78482300</td>
</tr>
<tr>
<td>H</td>
<td>0.88189200</td>
<td>-1.07345900</td>
<td>1.68023200</td>
</tr>
<tr>
<td>C</td>
<td>5.00604100</td>
<td>1.70211700</td>
<td>-1.47586700</td>
</tr>
<tr>
<td>H</td>
<td>5.71764000</td>
<td>2.52379300</td>
<td>-1.57804400</td>
</tr>
</tbody>
</table>
2) ВТАН

Pd 1.86292400 0.53003100 0.25422400
C 3.37424500 -1.27661700 -3.35844000
C 3.21030700 -0.85187700 -2.03942600
C 2.10166300 -0.08786500 -1.66983000
C 1.16065000 0.24418000 -2.64456100
C 1.32649000 -0.17811500 -3.96365600
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.43427100</td>
<td>-0.93791900</td>
<td>-4.32635200</td>
</tr>
<tr>
<td>O</td>
<td>1.75310700</td>
<td>1.27724600</td>
<td>2.36091500</td>
</tr>
<tr>
<td>C</td>
<td>1.24974000</td>
<td>0.53999500</td>
<td>3.24090600</td>
</tr>
<tr>
<td>P</td>
<td>3.33084300</td>
<td>2.33227600</td>
<td>-0.16720700</td>
</tr>
<tr>
<td>O</td>
<td>0.73066400</td>
<td>-0.60203400</td>
<td>3.00506600</td>
</tr>
<tr>
<td>H</td>
<td>3.95306900</td>
<td>-1.13509400</td>
<td>-1.30160300</td>
</tr>
<tr>
<td>H</td>
<td>0.58153300</td>
<td>0.08412200</td>
<td>-4.70660700</td>
</tr>
<tr>
<td>H</td>
<td>2.55978400</td>
<td>-1.26844200</td>
<td>-5.35032300</td>
</tr>
<tr>
<td>H</td>
<td>4.23792600</td>
<td>-1.87574900</td>
<td>-3.62530700</td>
</tr>
<tr>
<td>H</td>
<td>0.28230400</td>
<td>0.82116800</td>
<td>-2.38014600</td>
</tr>
<tr>
<td>C</td>
<td>1.22159200</td>
<td>1.00662600</td>
<td>4.67687400</td>
</tr>
<tr>
<td>H</td>
<td>1.51668000</td>
<td>0.19360000</td>
<td>5.33982500</td>
</tr>
<tr>
<td>H</td>
<td>1.87114000</td>
<td>1.86766900</td>
<td>4.81588500</td>
</tr>
<tr>
<td>H</td>
<td>0.19684500</td>
<td>1.28355300</td>
<td>4.93418000</td>
</tr>
<tr>
<td>H</td>
<td>0.67155700</td>
<td>-0.79821900</td>
<td>1.79423100</td>
</tr>
<tr>
<td>C</td>
<td>2.75311900</td>
<td>3.87417500</td>
<td>0.66555900</td>
</tr>
<tr>
<td>H</td>
<td>3.50259400</td>
<td>4.66521700</td>
<td>0.59678200</td>
</tr>
<tr>
<td>H</td>
<td>1.82890100</td>
<td>4.21057000</td>
<td>0.19514000</td>
</tr>
<tr>
<td>H</td>
<td>2.54179000</td>
<td>3.64424000</td>
<td>1.70879000</td>
</tr>
<tr>
<td>C</td>
<td>5.01384100</td>
<td>2.06546200</td>
<td>0.54763200</td>
</tr>
<tr>
<td>H</td>
<td>5.63699300</td>
<td>2.95489300</td>
<td>0.43243500</td>
</tr>
<tr>
<td>H</td>
<td>4.91470900</td>
<td>1.82639200</td>
<td>1.60619800</td>
</tr>
<tr>
<td>H</td>
<td>5.49260200</td>
<td>1.22477200</td>
<td>0.04547600</td>
</tr>
<tr>
<td>C</td>
<td>3.68008400</td>
<td>2.87617400</td>
<td>-1.89316400</td>
</tr>
<tr>
<td>H</td>
<td>4.36529800</td>
<td>3.72602900</td>
<td>-1.89826800</td>
</tr>
<tr>
<td>H</td>
<td>4.11165700</td>
<td>2.05023800</td>
<td>-2.45671700</td>
</tr>
<tr>
<td>H</td>
<td>2.74592400</td>
<td>3.15966600</td>
<td>-2.37741600</td>
</tr>
<tr>
<td>C</td>
<td>0.34188100</td>
<td>-1.12382000</td>
<td>0.46949100</td>
</tr>
<tr>
<td>C</td>
<td>0.59354200</td>
<td>-2.42128500</td>
<td>0.08689100</td>
</tr>
<tr>
<td>S</td>
<td>-0.74042700</td>
<td>-3.14004800</td>
<td>-0.74933400</td>
</tr>
<tr>
<td>C</td>
<td>-1.60192100</td>
<td>-1.60892200</td>
<td>-0.53827400</td>
</tr>
<tr>
<td>C</td>
<td>-2.95099200</td>
<td>-1.43476000</td>
<td>-1.03779200</td>
</tr>
<tr>
<td>S</td>
<td>-3.80898300</td>
<td>0.08939500</td>
<td>-0.79712600</td>
</tr>
<tr>
<td>C</td>
<td>-4.87312000</td>
<td>-1.87816900</td>
<td>-2.02321800</td>
</tr>
<tr>
<td>C</td>
<td>-5.15912300</td>
<td>-0.60301900</td>
<td>-1.64111500</td>
</tr>
<tr>
<td>H</td>
<td>-5.54562700</td>
<td>-2.52955400</td>
<td>-2.56264200</td>
</tr>
<tr>
<td>N</td>
<td>-3.63130400</td>
<td>-2.33935100</td>
<td>-1.68165200</td>
</tr>
<tr>
<td>N</td>
<td>-0.92982000</td>
<td>-0.70016800</td>
<td>0.09708300</td>
</tr>
<tr>
<td>H</td>
<td>-6.06600400</td>
<td>-0.04303100</td>
<td>-1.80098600</td>
</tr>
<tr>
<td>H</td>
<td>1.49343000</td>
<td>-2.99249800</td>
<td>0.25439600</td>
</tr>
</tbody>
</table>
3) DPPH

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>0.5377300</td>
<td>-0.1197260</td>
<td>0.1455940</td>
</tr>
<tr>
<td>C</td>
<td>0.5903520</td>
<td>3.5181450</td>
<td>-2.1668550</td>
</tr>
<tr>
<td>C</td>
<td>0.5537840</td>
<td>2.1791820</td>
<td>-1.7763330</td>
</tr>
<tr>
<td>C</td>
<td>0.5946000</td>
<td>1.8320230</td>
<td>-0.4253000</td>
</tr>
<tr>
<td>C</td>
<td>0.6746800</td>
<td>2.8464200</td>
<td>0.5291860</td>
</tr>
<tr>
<td>C</td>
<td>0.7141150</td>
<td>4.1848770</td>
<td>0.1368700</td>
</tr>
<tr>
<td>C</td>
<td>0.6748720</td>
<td>4.5257350</td>
<td>-1.2114040</td>
</tr>
<tr>
<td>O</td>
<td>0.6580790</td>
<td>-2.2777730</td>
<td>0.7271620</td>
</tr>
<tr>
<td>C</td>
<td>-0.3945990</td>
<td>-2.9326800</td>
<td>0.9100470</td>
</tr>
<tr>
<td>P</td>
<td>2.8836910</td>
<td>-0.2470590</td>
<td>-0.0754690</td>
</tr>
<tr>
<td>O</td>
<td>-1.5679580</td>
<td>-2.4380660</td>
<td>0.8165250</td>
</tr>
<tr>
<td>H</td>
<td>0.4834990</td>
<td>1.4116000</td>
<td>-2.5391400</td>
</tr>
<tr>
<td>H</td>
<td>0.7696940</td>
<td>4.9607750</td>
<td>0.1368700</td>
</tr>
<tr>
<td>H</td>
<td>0.7141150</td>
<td>4.5257350</td>
<td>-1.2114040</td>
</tr>
<tr>
<td>H</td>
<td>0.6748720</td>
<td>4.5257350</td>
<td>-1.2114040</td>
</tr>
<tr>
<td>C</td>
<td>-0.3099640</td>
<td>-4.3939230</td>
<td>1.2809550</td>
</tr>
<tr>
<td>H</td>
<td>-1.0080530</td>
<td>-4.9725290</td>
<td>0.6760810</td>
</tr>
<tr>
<td>H</td>
<td>0.7036830</td>
<td>-4.7663070</td>
<td>1.1536080</td>
</tr>
<tr>
<td>H</td>
<td>-0.6090340</td>
<td>-4.5093190</td>
<td>2.3249720</td>
</tr>
<tr>
<td>H</td>
<td>-1.5114990</td>
<td>-1.2316440</td>
<td>0.6134120</td>
</tr>
<tr>
<td>C</td>
<td>3.8859350</td>
<td>1.2065010</td>
<td>-0.6232800</td>
</tr>
<tr>
<td>H</td>
<td>4.9474530</td>
<td>0.9529320</td>
<td>-0.6294930</td>
</tr>
<tr>
<td>H</td>
<td>3.5617530</td>
<td>1.5357590</td>
<td>-1.5888100</td>
</tr>
<tr>
<td>H</td>
<td>3.7230730</td>
<td>2.0293460</td>
<td>0.0928030</td>
</tr>
<tr>
<td>C</td>
<td>3.6575880</td>
<td>-0.7578850</td>
<td>1.5202570</td>
</tr>
<tr>
<td>H</td>
<td>4.7277290</td>
<td>-0.9377630</td>
<td>1.3983240</td>
</tr>
<tr>
<td>H</td>
<td>3.5049030</td>
<td>0.0225290</td>
<td>2.2657620</td>
</tr>
<tr>
<td>H</td>
<td>3.1673510</td>
<td>-1.6672420</td>
<td>1.8658290</td>
</tr>
<tr>
<td>C</td>
<td>3.4018940</td>
<td>-1.5830390</td>
<td>-1.2404560</td>
</tr>
<tr>
<td>H</td>
<td>4.4837590</td>
<td>-1.7300280</td>
<td>-1.2162610</td>
</tr>
<tr>
<td>H</td>
<td>2.8988990</td>
<td>-2.5055400</td>
<td>-0.9526810</td>
</tr>
<tr>
<td>H</td>
<td>3.0973800</td>
<td>-1.3220380</td>
<td>-2.2541790</td>
</tr>
<tr>
<td>C</td>
<td>-1.6873180</td>
<td>0.1594050</td>
<td>0.4902450</td>
</tr>
<tr>
<td>C</td>
<td>-2.0350950</td>
<td>0.8770380</td>
<td>1.6736520</td>
</tr>
<tr>
<td>C</td>
<td>-2.5174140</td>
<td>0.5326470</td>
<td>-0.5434160</td>
</tr>
<tr>
<td>C</td>
<td>-3.0864430</td>
<td>1.7636880</td>
<td>1.5476410</td>
</tr>
<tr>
<td>S</td>
<td>-3.6982230</td>
<td>1.7194150</td>
<td>-0.1125570</td>
</tr>
<tr>
<td>H</td>
<td>-1.5143810</td>
<td>0.7632990</td>
<td>2.6160290</td>
</tr>
</tbody>
</table>
C -3.57004100 2.61850000 2.59546800
C -2.97886500 2.83475300 3.83597200
C -4.92352000 4.13245500 3.76476700
C -3.77915300 3.76203100 4.57084900
C -1.81510700 2.51151900 4.63066800
C -3.16705100 4.02054000 5.76122200
H -3.46030300 4.66969300 6.57185400
N -4.72948500 3.38957000 2.54704000
N -2.00297800 3.29137400 5.82262600
O -0.84649200 1.78008000 4.46226800
O -5.87242700 4.86002800 3.95629200
C -5.72626500 3.46278900 1.49535700
H -5.32341900 3.91649000 0.58848700
H -6.13063200 2.47755400 1.25987300
H -6.52637700 4.09572800 1.87541100
C -1.06948400 3.26215400 6.92965000
H -0.25003300 2.60522200 6.64396700
H -0.67263300 4.25877400 7.13503500
H -1.54013500 2.86938800 7.83391300
H -2.51692600 0.16655500 -1.55971300

4) NDPPH

Pd 0.88748400 -0.13712600 0.11393000
C 0.53706300 3.79199100 -1.63758200
C 0.47488900 2.41680600 -1.41684000
C 0.98712200 1.86242000 -0.24361000
C 1.56055400 2.71151700 0.70539200
C 1.62289400 4.08808700 0.48404700
C 1.11438500 4.63257200 -0.69043800
O 0.90934500 -2.32081000 0.62525100
C 0.15328500 -2.71077700 1.54476600
P 3.13240900 -0.31128900 -0.61526000
O -0.74656400 -1.98202700 2.08892900
H 0.00174600 1.78685800 -2.16019900
H 2.06666700 4.73219400 1.23521600
H 1.16003000 5.70122100 -0.86252100
H 0.12033300 4.20481100 -2.54916000
H 1.95261100 2.31254900 1.63457800
C 0.27199500 -4.12285000 2.06578100
H 1.11130000 -4.63648900 1.60333500
H 0.39211900 -4.10366500 3.14972300
H -0.65275000 -4.66214800 1.85255500

87
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.877588</td>
<td>-0.958693</td>
<td>1.453247</td>
</tr>
<tr>
<td>C</td>
<td>3.745267</td>
<td>0.828160</td>
<td>-1.929377</td>
</tr>
<tr>
<td>H</td>
<td>4.784176</td>
<td>0.605487</td>
<td>-2.180540</td>
</tr>
<tr>
<td>H</td>
<td>3.126570</td>
<td>0.718459</td>
<td>-2.819900</td>
</tr>
<tr>
<td>H</td>
<td>3.661869</td>
<td>1.858238</td>
<td>-1.586305</td>
</tr>
<tr>
<td>C</td>
<td>4.377860</td>
<td>-0.100220</td>
<td>0.733932</td>
</tr>
<tr>
<td>H</td>
<td>5.392670</td>
<td>-0.247391</td>
<td>0.358346</td>
</tr>
<tr>
<td>H</td>
<td>4.177831</td>
<td>-0.822407</td>
<td>1.525400</td>
</tr>
<tr>
<td>C</td>
<td>5.316822</td>
<td>-1.986403</td>
<td>-1.289444</td>
</tr>
<tr>
<td>H</td>
<td>4.583437</td>
<td>-2.092524</td>
<td>-1.496825</td>
</tr>
<tr>
<td>H</td>
<td>3.194605</td>
<td>-2.737222</td>
<td>-0.569719</td>
</tr>
<tr>
<td>C</td>
<td>2.953342</td>
<td>-2.139187</td>
<td>-2.210234</td>
</tr>
<tr>
<td>C</td>
<td>-1.280402</td>
<td>0.141634</td>
<td>0.631121</td>
</tr>
<tr>
<td>H</td>
<td>-1.810001</td>
<td>1.302910</td>
<td>1.274684</td>
</tr>
<tr>
<td>C</td>
<td>-2.114253</td>
<td>-0.231127</td>
<td>-0.403640</td>
</tr>
<tr>
<td>C</td>
<td>-2.968402</td>
<td>1.806012</td>
<td>0.733482</td>
</tr>
<tr>
<td>S</td>
<td>-3.470830</td>
<td>0.812688</td>
<td>-0.630104</td>
</tr>
<tr>
<td>H</td>
<td>-1.336354</td>
<td>1.767399</td>
<td>2.126282</td>
</tr>
<tr>
<td>C</td>
<td>-2.017783</td>
<td>-1.089016</td>
<td>-1.053740</td>
</tr>
<tr>
<td>C</td>
<td>-3.749889</td>
<td>2.936281</td>
<td>1.223541</td>
</tr>
<tr>
<td>C</td>
<td>-4.387017</td>
<td>3.902699</td>
<td>0.468391</td>
</tr>
<tr>
<td>C</td>
<td>-3.923425</td>
<td>3.102277</td>
<td>2.657697</td>
</tr>
<tr>
<td>C</td>
<td>-5.154398</td>
<td>4.963129</td>
<td>1.048780</td>
</tr>
<tr>
<td>C</td>
<td>-4.709773</td>
<td>4.190926</td>
<td>3.221901</td>
</tr>
<tr>
<td>C</td>
<td>-5.339372</td>
<td>5.146235</td>
<td>2.379408</td>
</tr>
<tr>
<td>H</td>
<td>-5.920042</td>
<td>5.964720</td>
<td>2.781267</td>
</tr>
<tr>
<td>N</td>
<td>-3.426484</td>
<td>2.289363</td>
<td>3.583911</td>
</tr>
<tr>
<td>N</td>
<td>-4.772923</td>
<td>4.180055</td>
<td>4.550416</td>
</tr>
<tr>
<td>S</td>
<td>-3.901924</td>
<td>2.870106</td>
<td>5.049725</td>
</tr>
<tr>
<td>C</td>
<td>-4.371695</td>
<td>4.152132</td>
<td>-1.007146</td>
</tr>
<tr>
<td>C</td>
<td>-5.662459</td>
<td>5.840014</td>
<td>-0.043039</td>
</tr>
<tr>
<td>O</td>
<td>-6.359708</td>
<td>6.825304</td>
<td>0.042889</td>
</tr>
<tr>
<td>O</td>
<td>-3.813156</td>
<td>3.559129</td>
<td>-1.899760</td>
</tr>
<tr>
<td>N</td>
<td>-5.155823</td>
<td>5.298358</td>
<td>-1.122176</td>
</tr>
<tr>
<td>C</td>
<td>-5.379517</td>
<td>5.861532</td>
<td>-2.539071</td>
</tr>
<tr>
<td>H</td>
<td>-6.043613</td>
<td>6.715160</td>
<td>-2.425024</td>
</tr>
<tr>
<td>H</td>
<td>-4.435681</td>
<td>6.182660</td>
<td>-2.981197</td>
</tr>
<tr>
<td>H</td>
<td>-5.835298</td>
<td>5.118675</td>
<td>-3.193937</td>
</tr>
</tbody>
</table>
5) OBDTH

Pd 2.08278700 0.36506000 0.05557900
C 1.34643500 0.48280100 -4.19103800
C 1.84108400 0.16041700 -2.92692100
C 1.34345900 0.79354300 -1.78740500
C 0.34041000 1.75254200 -1.93286800
C -0.15208000 2.07503700 -3.19786800
C 0.35149500 1.44520700 -4.33171100
O 3.03584000 0.01126100 2.06555100
C 2.49624900 -0.75169900 2.89358000
P 3.73056800 2.04444300 -0.22155400
O 1.40873900 -1.39420100 2.67272800
H 2.61178500 -0.59705200 -2.84202100
H -0.93616700 2.81820200 -3.29169600
H -0.03267200 1.69563800 -5.31336400
H 1.74013500 -0.02403300 -5.06529300
H -0.07713500 2.24273400 -1.06131300
C 3.12837600 -0.96858700 4.24724400
H 2.40052400 -0.75538200 5.03124800
H 3.41230700 -2.01780500 4.34670000
H 4.00518200 -0.33724400 4.36799100
H -0.03267200 -1.39420100 5.31336400
H 1.74013500 -0.02403300 -5.06529300
H 0.35149500 1.44520700 -4.33171100
C 3.12837600 -0.96858700 4.24724400
H 2.40052400 -0.75538200 5.03124800
H 3.41230700 -2.01780500 4.34670000
H 4.00518200 -0.33724400 4.36799100
H -0.03267200 -1.39420100 5.31336400
H 1.74013500 -0.02403300 -5.06529300
H 0.35149500 1.44520700 -4.33171100
C 3.12837600 -0.96858700 4.24724400
H 2.40052400 -0.75538200 5.03124800
H 3.41230700 -2.01780500 4.34670000
H 4.00518200 -0.33724400 4.36799100
H -0.03267200 -1.39420100 5.31336400
H 1.74013500 -0.02403300 -5.06529300
H 0.35149500 1.44520700 -4.33171100
C 3.12837600 -0.96858700 4.24724400
H 2.40052400 -0.75538200 5.03124800
H 3.41230700 -2.01780500 4.34670000
H 4.00518200 -0.33724400 4.36799100
H -0.03267200 -1.39420100 5.31336400
H 1.74013500 -0.02403300 -5.06529300
H 0.35149500 1.44520700 -4.33171100
C 3.12837600 -0.96858700 4.24724400
H 2.40052400 -0.75538200 5.03124800
H 3.41230700 -2.01780500 4.34670000
H 4.00518200 -0.33724400 4.36799100
H -0.03267200 -1.39420100 5.31336400
H 1.74013500 -0.02403300 -5.06529300
H 0.35149500 1.44520700 -4.33171100
C 3.12837600 -0.96858700 4.24724400
H 2.40052400 -0.75538200 5.03124800
H 3.41230700 -2.01780500 4.34670000
H 4.00518200 -0.33724400 4.36799100
H -0.03267200 -1.39420100 5.31336400
H 1.74013500 -0.02403300 -5.06529300
H 0.35149500 1.44520700 -4.33171100
C -0.57537500 2.20301200 -1.22324900 1.55127100
C -3.58141200 3.35698800 1.07085800
H -4.00403000 4.07637200 1.00368900
H -2.63239400 3.87912200 0.94789900
H -3.59091600 2.88318500 2.05203100
C -0.47663300 1.20264900 0.21756600
C -0.74242200 -2.38103600 -0.41818500
C -0.93474900 -0.87118000 0.06365900
S -0.61966000 -3.15281200 -1.21021400
H -1.69133600 -2.89715800 -0.45919800
C -1.66133500 -1.82525900 -0.70244200
C -1.62607400 0.23703900 0.57041100
C -3.01195200 -1.70071400 -0.99256600
6) ThioH

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>2.01818900</td>
<td>0.56302500</td>
<td>0.27132100</td>
</tr>
<tr>
<td>C</td>
<td>1.44464900</td>
<td>-0.12474900</td>
<td>-3.95355100</td>
</tr>
<tr>
<td>C</td>
<td>1.83352500</td>
<td>-0.24107600</td>
<td>-2.61979100</td>
</tr>
<tr>
<td>C</td>
<td>1.41538800</td>
<td>0.69274700</td>
<td>-1.66966300</td>
</tr>
<tr>
<td>C</td>
<td>0.59595200</td>
<td>1.74418200</td>
<td>-2.08772000</td>
</tr>
<tr>
<td>C</td>
<td>0.20318000</td>
<td>1.85958700</td>
<td>-3.42210800</td>
</tr>
<tr>
<td>C</td>
<td>0.62925800</td>
<td>0.92678300</td>
<td>-4.36152500</td>
</tr>
<tr>
<td>O</td>
<td>2.71222200</td>
<td>0.58278800</td>
<td>2.40810100</td>
</tr>
<tr>
<td>C</td>
<td>1.98339500</td>
<td>0.09253100</td>
<td>3.29908500</td>
</tr>
<tr>
<td>P</td>
<td>3.65443800</td>
<td>2.22983900</td>
<td>-0.17374000</td>
</tr>
<tr>
<td>O</td>
<td>0.89730400</td>
<td>-0.54300500</td>
<td>3.06770700</td>
</tr>
<tr>
<td>H</td>
<td>2.45516900</td>
<td>-1.07729700</td>
<td>-2.32460700</td>
</tr>
<tr>
<td>H</td>
<td>-0.43759500</td>
<td>2.68117800</td>
<td>-3.72327600</td>
</tr>
<tr>
<td>H</td>
<td>0.32543800</td>
<td>1.01469100</td>
<td>-5.39772100</td>
</tr>
<tr>
<td>H</td>
<td>1.77568900</td>
<td>-0.86519500</td>
<td>-4.67337500</td>
</tr>
<tr>
<td>H</td>
<td>0.24724800</td>
<td>2.48353800</td>
<td>-1.37523400</td>
</tr>
<tr>
<td>C</td>
<td>2.37688100</td>
<td>0.22726500</td>
<td>4.75089900</td>
</tr>
<tr>
<td>H</td>
<td>3.25862300</td>
<td>0.85476700</td>
<td>4.85549600</td>
</tr>
<tr>
<td>H</td>
<td>1.54550500</td>
<td>0.64692500</td>
<td>5.31857100</td>
</tr>
<tr>
<td>H</td>
<td>2.58032000</td>
<td>-0.76426700</td>
<td>5.15961300</td>
</tr>
<tr>
<td>H</td>
<td>0.76632300</td>
<td>-0.70611300</td>
<td>1.88167000</td>
</tr>
<tr>
<td>C</td>
<td>4.33000200</td>
<td>2.41592800</td>
<td>-1.88026200</td>
</tr>
<tr>
<td>H</td>
<td>5.08538200</td>
<td>3.20350500</td>
<td>-1.91453300</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H</td>
<td>4.775290</td>
<td>1.472682</td>
<td>-2.196281</td>
</tr>
<tr>
<td>H</td>
<td>3.519959</td>
<td>2.652046</td>
<td>-2.568808</td>
</tr>
<tr>
<td>C</td>
<td>3.097686</td>
<td>3.943738</td>
<td>0.241379</td>
</tr>
<tr>
<td>H</td>
<td>3.898783</td>
<td>4.669241</td>
<td>0.084593</td>
</tr>
<tr>
<td>H</td>
<td>2.246962</td>
<td>4.208905</td>
<td>-0.386234</td>
</tr>
<tr>
<td>H</td>
<td>2.781502</td>
<td>3.974402</td>
<td>1.284040</td>
</tr>
<tr>
<td>C</td>
<td>5.170160</td>
<td>2.021381</td>
<td>0.860849</td>
</tr>
<tr>
<td>H</td>
<td>5.844986</td>
<td>2.872426</td>
<td>0.749627</td>
</tr>
<tr>
<td>H</td>
<td>4.868756</td>
<td>1.910641</td>
<td>1.901235</td>
</tr>
<tr>
<td>H</td>
<td>5.687007</td>
<td>1.110089</td>
<td>0.558757</td>
</tr>
<tr>
<td>C</td>
<td>0.530295</td>
<td>-1.086966</td>
<td>0.519705</td>
</tr>
<tr>
<td>C</td>
<td>1.056004</td>
<td>-2.321017</td>
<td>0.223292</td>
</tr>
<tr>
<td>C</td>
<td>-0.864646</td>
<td>-1.016418</td>
<td>0.126195</td>
</tr>
<tr>
<td>S</td>
<td>-0.088297</td>
<td>-3.391343</td>
<td>-0.520993</td>
</tr>
<tr>
<td>C</td>
<td>-1.34304</td>
<td>-2.163403</td>
<td>-0.442500</td>
</tr>
<tr>
<td>C</td>
<td>-2.705125</td>
<td>-2.453426</td>
<td>-0.994635</td>
</tr>
<tr>
<td>H</td>
<td>-3.458326</td>
<td>-1.836605</td>
<td>-0.501818</td>
</tr>
<tr>
<td>H</td>
<td>-2.759234</td>
<td>-2.240998</td>
<td>-2.067024</td>
</tr>
<tr>
<td>H</td>
<td>-2.988093</td>
<td>-3.498044</td>
<td>-0.851608</td>
</tr>
<tr>
<td>C</td>
<td>-1.698814</td>
<td>0.215671</td>
<td>0.347076</td>
</tr>
<tr>
<td>H</td>
<td>-1.686789</td>
<td>0.866256</td>
<td>-0.531922</td>
</tr>
<tr>
<td>H</td>
<td>-2.741547</td>
<td>-0.026223</td>
<td>0.562295</td>
</tr>
<tr>
<td>H</td>
<td>-1.308129</td>
<td>0.793158</td>
<td>1.186263</td>
</tr>
<tr>
<td>H</td>
<td>2.051958</td>
<td>-2.686890</td>
<td>0.425547</td>
</tr>
</tbody>
</table>

7) TVTH

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>2.015500</td>
<td>0.511823</td>
<td>0.287921</td>
</tr>
<tr>
<td>C</td>
<td>1.159532</td>
<td>-0.056239</td>
<td>-3.903699</td>
</tr>
<tr>
<td>C</td>
<td>1.665880</td>
<td>-0.194922</td>
<td>-2.611724</td>
</tr>
<tr>
<td>C</td>
<td>1.290706</td>
<td>0.692510</td>
<td>-1.602936</td>
</tr>
<tr>
<td>C</td>
<td>0.399137</td>
<td>1.721455</td>
<td>-1.912785</td>
</tr>
<tr>
<td>C</td>
<td>-0.107784</td>
<td>1.859706</td>
<td>-3.205339</td>
</tr>
<tr>
<td>C</td>
<td>0.273378</td>
<td>0.972838</td>
<td>-4.206725</td>
</tr>
<tr>
<td>O</td>
<td>2.821964</td>
<td>0.485284</td>
<td>2.383711</td>
</tr>
<tr>
<td>C</td>
<td>2.054550</td>
<td>0.125908</td>
<td>3.306476</td>
</tr>
<tr>
<td>P</td>
<td>3.667010</td>
<td>2.133933</td>
<td>-0.211042</td>
</tr>
<tr>
<td>O</td>
<td>0.890383</td>
<td>-0.367666</td>
<td>3.117007</td>
</tr>
<tr>
<td>H</td>
<td>2.343255</td>
<td>-1.012522</td>
<td>-2.396213</td>
</tr>
<tr>
<td>H</td>
<td>-0.804294</td>
<td>2.661359</td>
<td>-3.425036</td>
</tr>
<tr>
<td>H</td>
<td>-0.121531</td>
<td>1.077443</td>
<td>-5.210014</td>
</tr>
<tr>
<td>H</td>
<td>1.455317</td>
<td>-0.761362</td>
<td>-4.672523</td>
</tr>
<tr>
<td>H</td>
<td>0.080278</td>
<td>2.420603</td>
<td>-1.147423</td>
</tr>
</tbody>
</table>
TS for the CMD activation of the β protons of the Br-derivatives

1) BDTBr

<table>
<thead>
<tr>
<th></th>
<th>2.07771300</th>
<th>0.40797400</th>
<th>-0.13976300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>1.09862000</td>
<td>1.08024200</td>
<td>-4.28146400</td>
</tr>
<tr>
<td>C</td>
<td>1.66856200</td>
<td>0.60814200</td>
<td>-3.09887100</td>
</tr>
<tr>
<td>C</td>
<td>1.23966900</td>
<td>1.09231400</td>
<td>-1.86293600</td>
</tr>
<tr>
<td>C</td>
<td>0.23415700</td>
<td>2.05806600</td>
<td>-1.82977300</td>
</tr>
<tr>
<td>C</td>
<td>-0.33467800</td>
<td>2.53053500</td>
<td>-3.01282600</td>
</tr>
<tr>
<td>C</td>
<td>0.09820500</td>
<td>2.04632300</td>
<td>-4.24291700</td>
</tr>
<tr>
<td>O</td>
<td>3.12061500</td>
<td>-0.20976200</td>
<td>1.74990800</td>
</tr>
<tr>
<td>C</td>
<td>2.65935100</td>
<td>-1.12841600</td>
<td>2.46495400</td>
</tr>
<tr>
<td>P</td>
<td>3.74093600</td>
<td>2.07599200</td>
<td>-0.29172800</td>
</tr>
<tr>
<td>O</td>
<td>1.58883100</td>
<td>-1.77410000</td>
<td>2.20055300</td>
</tr>
<tr>
<td>H</td>
<td>2.43739000</td>
<td>-0.15398900</td>
<td>3.15250900</td>
</tr>
<tr>
<td>H</td>
<td>-1.12221400</td>
<td>3.27444100</td>
<td>-2.96741000</td>
</tr>
<tr>
<td>H</td>
<td>-0.34541000</td>
<td>2.41164400</td>
<td>-5.16128600</td>
</tr>
<tr>
<td>H</td>
<td>1.43686200</td>
<td>0.68530300</td>
<td>-5.23302000</td>
</tr>
<tr>
<td>H</td>
<td>-0.12807900</td>
<td>2.44219100</td>
<td>-0.88348800</td>
</tr>
<tr>
<td>C</td>
<td>3.39132900</td>
<td>-1.53804600</td>
<td>3.72070900</td>
</tr>
<tr>
<td>H</td>
<td>4.19241100</td>
<td>-0.83806600</td>
<td>3.94575700</td>
</tr>
<tr>
<td>H</td>
<td>2.69257700</td>
<td>-1.59822200</td>
<td>4.55526500</td>
</tr>
<tr>
<td>H</td>
<td>3.81056700</td>
<td>-2.53569500</td>
<td>3.57450700</td>
</tr>
<tr>
<td>H</td>
<td>1.12931700</td>
<td>-1.42872800</td>
<td>1.13077100</td>
</tr>
<tr>
<td>C</td>
<td>3.83676700</td>
<td>3.09048800</td>
<td>1.24847200</td>
</tr>
<tr>
<td>H</td>
<td>4.70404300</td>
<td>3.75386300</td>
<td>1.23088500</td>
</tr>
<tr>
<td>H</td>
<td>2.93048000</td>
<td>3.68799500</td>
<td>1.34927400</td>
</tr>
<tr>
<td>H</td>
<td>3.90561500</td>
<td>2.41599700</td>
<td>2.10111800</td>
</tr>
<tr>
<td>C</td>
<td>5.42519400</td>
<td>1.32685700</td>
<td>-0.40368600</td>
</tr>
<tr>
<td>H</td>
<td>6.20113300</td>
<td>2.09412000</td>
<td>-0.35968100</td>
</tr>
<tr>
<td>H</td>
<td>5.55145700</td>
<td>0.62830300</td>
<td>0.42286400</td>
</tr>
<tr>
<td>H</td>
<td>5.51597900</td>
<td>0.77629000</td>
<td>-1.34006500</td>
</tr>
<tr>
<td>C</td>
<td>3.73338500</td>
<td>3.33234700</td>
<td>-1.63935000</td>
</tr>
<tr>
<td>H</td>
<td>4.58381800</td>
<td>4.00923400</td>
<td>-1.53823100</td>
</tr>
<tr>
<td>H</td>
<td>3.77527700</td>
<td>2.83080000</td>
<td>-2.60538700</td>
</tr>
<tr>
<td>H</td>
<td>2.80500200</td>
<td>3.90111100</td>
<td>-1.60052200</td>
</tr>
<tr>
<td>C</td>
<td>0.46005500</td>
<td>-1.19350600</td>
<td>-0.08953300</td>
</tr>
<tr>
<td>C</td>
<td>0.63840000</td>
<td>-2.18712400</td>
<td>-1.00113200</td>
</tr>
<tr>
<td>C</td>
<td>-0.96549600</td>
<td>-0.87759900</td>
<td>-0.00156700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>S</td>
<td>-0.79348000</td>
<td>-2.78157800</td>
<td>-1.81716000</td>
</tr>
<tr>
<td>C</td>
<td>-1.78123100</td>
<td>-1.64959700</td>
<td>-0.87719300</td>
</tr>
<tr>
<td>C</td>
<td>-1.57548700</td>
<td>0.05207600</td>
<td>0.85735400</td>
</tr>
<tr>
<td>C</td>
<td>-3.16264200</td>
<td>-1.54759700</td>
<td>-0.96704400</td>
</tr>
<tr>
<td>C</td>
<td>-2.96130500</td>
<td>0.16100400</td>
<td>0.76918400</td>
</tr>
<tr>
<td>C</td>
<td>-0.79701900</td>
<td>0.86397700</td>
<td>1.85599400</td>
</tr>
<tr>
<td>C</td>
<td>-3.76291500</td>
<td>-0.60195400</td>
<td>-0.11907400</td>
</tr>
<tr>
<td>C</td>
<td>-3.96488700</td>
<td>-2.38073800</td>
<td>-1.93025100</td>
</tr>
<tr>
<td>S</td>
<td>-3.96674500</td>
<td>1.24899800</td>
<td>1.74068800</td>
</tr>
<tr>
<td>H</td>
<td>-1.29966900</td>
<td>1.80731700</td>
<td>2.07841700</td>
</tr>
<tr>
<td>H</td>
<td>-0.67967500</td>
<td>0.31977400</td>
<td>2.79778000</td>
</tr>
<tr>
<td>H</td>
<td>0.20409600</td>
<td>1.09393000</td>
<td>1.48673300</td>
</tr>
<tr>
<td>C</td>
<td>-5.15978900</td>
<td>-2.57285600</td>
<td>-1.55449000</td>
</tr>
<tr>
<td>H</td>
<td>-4.06254500</td>
<td>-1.88225500</td>
<td>-2.89984900</td>
</tr>
<tr>
<td>H</td>
<td>-3.49152100</td>
<td>-3.34830000</td>
<td>-2.10732000</td>
</tr>
<tr>
<td>H</td>
<td>-5.41083900</td>
<td>0.67763300</td>
<td>0.92915000</td>
</tr>
<tr>
<td>H</td>
<td>-5.93871900</td>
<td>-0.72751200</td>
<td>-0.59312000</td>
</tr>
<tr>
<td>H</td>
<td>-6.36755700</td>
<td>1.09217500</td>
<td>1.20584100</td>
</tr>
<tr>
<td>Br</td>
<td>2.29161500</td>
<td>-3.01779000</td>
<td>-1.45507800</td>
</tr>
</tbody>
</table>

2) BATBr

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>1.75294800</td>
<td>0.73623100</td>
<td>0.37056300</td>
</tr>
<tr>
<td>C</td>
<td>3.31487400</td>
<td>-1.51447600</td>
<td>-2.96124700</td>
</tr>
<tr>
<td>C</td>
<td>3.11265700</td>
<td>-0.96112900</td>
<td>-1.69635400</td>
</tr>
<tr>
<td>C</td>
<td>2.06137800</td>
<td>-0.07194100</td>
<td>-1.47133500</td>
</tr>
<tr>
<td>C</td>
<td>1.21610700</td>
<td>0.25503100</td>
<td>-2.53169700</td>
</tr>
<tr>
<td>C</td>
<td>1.42124600</td>
<td>-0.29643700</td>
<td>-3.79661100</td>
</tr>
<tr>
<td>C</td>
<td>2.47371800</td>
<td>-1.17923300</td>
<td>-4.01715900</td>
</tr>
<tr>
<td>O</td>
<td>1.54513100</td>
<td>1.73466200</td>
<td>2.35404600</td>
</tr>
<tr>
<td>C</td>
<td>0.74198200</td>
<td>1.27811700</td>
<td>3.20353100</td>
</tr>
<tr>
<td>P</td>
<td>3.30867000</td>
<td>2.42934700</td>
<td>-0.13108200</td>
</tr>
<tr>
<td>O</td>
<td>0.01312800</td>
<td>0.24950000</td>
<td>3.01768700</td>
</tr>
<tr>
<td>H</td>
<td>3.77427800</td>
<td>-1.24691500</td>
<td>-0.88650400</td>
</tr>
<tr>
<td>H</td>
<td>0.75108700</td>
<td>-0.03623600</td>
<td>-4.60834100</td>
</tr>
<tr>
<td>H</td>
<td>2.63097600</td>
<td>-1.60845500</td>
<td>-4.99926400</td>
</tr>
<tr>
<td>H</td>
<td>4.13134500</td>
<td>-2.21099600</td>
<td>-3.11623000</td>
</tr>
<tr>
<td>H</td>
<td>0.37992100</td>
<td>0.92671900</td>
<td>-2.37753400</td>
</tr>
<tr>
<td>C</td>
<td>0.60120100</td>
<td>1.96711000</td>
<td>4.54030300</td>
</tr>
<tr>
<td>H</td>
<td>0.79931300</td>
<td>1.25210900</td>
<td>5.33999900</td>
</tr>
<tr>
<td>H</td>
<td>1.28380600</td>
<td>2.81003500</td>
<td>4.61564800</td>
</tr>
<tr>
<td>H</td>
<td>-0.42758800</td>
<td>2.31074700</td>
<td>4.66034500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H</td>
<td>0.20851400</td>
<td>-0.22743000</td>
<td>1.88968600</td>
</tr>
<tr>
<td>C</td>
<td>4.80286500</td>
<td>2.31287800</td>
<td>0.94752500</td>
</tr>
<tr>
<td>H</td>
<td>5.46172500</td>
<td>3.17108400</td>
<td>0.79936900</td>
</tr>
<tr>
<td>H</td>
<td>4.48003200</td>
<td>2.27407600</td>
<td>1.98745200</td>
</tr>
<tr>
<td>H</td>
<td>5.34774800</td>
<td>1.39710300</td>
<td>0.71849100</td>
</tr>
<tr>
<td>C</td>
<td>4.00469000</td>
<td>2.62637400</td>
<td>-1.82528300</td>
</tr>
<tr>
<td>H</td>
<td>4.71254800</td>
<td>3.45694300</td>
<td>-1.85469600</td>
</tr>
<tr>
<td>H</td>
<td>4.50315000</td>
<td>1.70589500</td>
<td>-2.12622200</td>
</tr>
<tr>
<td>H</td>
<td>3.19462100</td>
<td>2.81201900</td>
<td>-2.52980700</td>
</tr>
<tr>
<td>C</td>
<td>2.63256700</td>
<td>4.10071500</td>
<td>0.26214200</td>
</tr>
<tr>
<td>H</td>
<td>3.40180100</td>
<td>4.86899000</td>
<td>0.15998400</td>
</tr>
<tr>
<td>H</td>
<td>1.80629600</td>
<td>4.32623800</td>
<td>-0.41224700</td>
</tr>
<tr>
<td>H</td>
<td>2.25335300</td>
<td>4.08760600</td>
<td>1.28306500</td>
</tr>
<tr>
<td>C</td>
<td>0.21833900</td>
<td>-0.92049900</td>
<td>0.69268400</td>
</tr>
<tr>
<td>C</td>
<td>0.62109700</td>
<td>-2.23555800</td>
<td>0.74028500</td>
</tr>
<tr>
<td>S</td>
<td>-0.41389600</td>
<td>-3.31357900</td>
<td>-0.15367600</td>
</tr>
<tr>
<td>C</td>
<td>-1.38107100</td>
<td>-1.88731300</td>
<td>-0.55747000</td>
</tr>
<tr>
<td>Br</td>
<td>2.11035500</td>
<td>-2.91797000</td>
<td>1.67979900</td>
</tr>
<tr>
<td>C</td>
<td>-2.56696800</td>
<td>-2.00253000</td>
<td>-1.37826300</td>
</tr>
<tr>
<td>S</td>
<td>-3.53230800</td>
<td>-0.57360600</td>
<td>-1.75977600</td>
</tr>
<tr>
<td>C</td>
<td>-4.14844700</td>
<td>-2.91548100</td>
<td>-2.62232200</td>
</tr>
<tr>
<td>C</td>
<td>-4.58356200</td>
<td>-1.62574900</td>
<td>-2.67318100</td>
</tr>
<tr>
<td>H</td>
<td>-4.63014200</td>
<td>-3.75171700</td>
<td>-3.10654900</td>
</tr>
<tr>
<td>N</td>
<td>-3.01301400</td>
<td>-3.11381100</td>
<td>-1.89040000</td>
</tr>
<tr>
<td>N</td>
<td>-0.94152300</td>
<td>-0.77523200</td>
<td>-0.05752600</td>
</tr>
<tr>
<td>Br</td>
<td>-6.10388800</td>
<td>-0.97669300</td>
<td>-3.57985500</td>
</tr>
</tbody>
</table>

3) DPPBr

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>2.03668700</td>
<td>0.36166100</td>
<td>0.17970900</td>
</tr>
<tr>
<td>C</td>
<td>1.02067100</td>
<td>-0.14466900</td>
<td>-3.97562200</td>
</tr>
<tr>
<td>C</td>
<td>1.60961000</td>
<td>-0.26225300</td>
<td>-2.71596500</td>
</tr>
<tr>
<td>C</td>
<td>1.18986400</td>
<td>0.54737700</td>
<td>-1.66077600</td>
</tr>
<tr>
<td>C</td>
<td>0.17514600</td>
<td>1.47893400</td>
<td>-1.88168500</td>
</tr>
<tr>
<td>C</td>
<td>-0.40978000</td>
<td>1.59635300</td>
<td>-3.14300000</td>
</tr>
<tr>
<td>C</td>
<td>0.01276300</td>
<td>0.78875800</td>
<td>-4.19436600</td>
</tr>
<tr>
<td>O</td>
<td>3.11245300</td>
<td>0.28025400</td>
<td>2.13782400</td>
</tr>
<tr>
<td>C</td>
<td>2.68295100</td>
<td>-0.45018400</td>
<td>3.06286200</td>
</tr>
<tr>
<td>P</td>
<td>3.70079600</td>
<td>1.89260600</td>
<td>-0.46049200</td>
</tr>
<tr>
<td>O</td>
<td>1.63688900</td>
<td>-1.17400200</td>
<td>2.97485300</td>
</tr>
<tr>
<td>H</td>
<td>2.38766800</td>
<td>-1.00181300</td>
<td>-2.56503500</td>
</tr>
<tr>
<td>H</td>
<td>-1.20311300</td>
<td>2.31905900</td>
<td>-3.29764800</td>
</tr>
<tr>
<td>H</td>
<td>-0.44410800</td>
<td>0.88081100</td>
<td>-5.17237100</td>
</tr>
<tr>
<td></td>
<td>1.35202100</td>
<td>-0.78740600</td>
<td>-4.78364800</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>-0.18517100</td>
<td>2.10446600</td>
<td>-1.07323500</td>
</tr>
<tr>
<td></td>
<td>3.41764500</td>
<td>-0.49099400</td>
<td>4.38183600</td>
</tr>
<tr>
<td></td>
<td>2.78626500</td>
<td>-0.04585800</td>
<td>5.15339800</td>
</tr>
<tr>
<td></td>
<td>3.60048400</td>
<td>-1.52669300</td>
<td>4.66927600</td>
</tr>
<tr>
<td></td>
<td>4.35583200</td>
<td>0.05508300</td>
<td>4.31928300</td>
</tr>
<tr>
<td></td>
<td>1.10159400</td>
<td>-1.04167900</td>
<td>1.86776400</td>
</tr>
<tr>
<td></td>
<td>5.38562400</td>
<td>1.14332300</td>
<td>-0.36896800</td>
</tr>
<tr>
<td></td>
<td>6.15980500</td>
<td>1.89544100</td>
<td>-0.53472200</td>
</tr>
<tr>
<td></td>
<td>5.51378700</td>
<td>0.69534600</td>
<td>0.61577800</td>
</tr>
<tr>
<td></td>
<td>5.47753800</td>
<td>0.36067300</td>
<td>-1.12215200</td>
</tr>
<tr>
<td></td>
<td>3.67737300</td>
<td>2.72037300</td>
<td>-2.10573100</td>
</tr>
<tr>
<td></td>
<td>4.52428800</td>
<td>3.40234400</td>
<td>-2.20276600</td>
</tr>
<tr>
<td></td>
<td>3.71810900</td>
<td>1.96917500</td>
<td>-2.89343300</td>
</tr>
<tr>
<td></td>
<td>2.74586000</td>
<td>3.27309000</td>
<td>-2.22143300</td>
</tr>
<tr>
<td></td>
<td>3.78778100</td>
<td>3.29250000</td>
<td>0.73810800</td>
</tr>
<tr>
<td></td>
<td>4.64162700</td>
<td>3.93989000</td>
<td>0.52745200</td>
</tr>
<tr>
<td></td>
<td>2.86887400</td>
<td>3.87571700</td>
<td>0.67963200</td>
</tr>
<tr>
<td></td>
<td>3.87415600</td>
<td>2.88017900</td>
<td>1.74276500</td>
</tr>
<tr>
<td></td>
<td>0.29713100</td>
<td>-1.02249900</td>
<td>0.73778700</td>
</tr>
<tr>
<td></td>
<td>-0.97114300</td>
<td>-0.37559600</td>
<td>0.84494600</td>
</tr>
<tr>
<td></td>
<td>0.12839100</td>
<td>-2.22697700</td>
<td>0.10119300</td>
</tr>
<tr>
<td></td>
<td>-2.04914900</td>
<td>-1.05130400</td>
<td>0.31199400</td>
</tr>
<tr>
<td></td>
<td>-1.50331700</td>
<td>-2.59482400</td>
<td>-0.36762700</td>
</tr>
<tr>
<td></td>
<td>-1.09648400</td>
<td>0.59916300</td>
<td>1.29935800</td>
</tr>
<tr>
<td></td>
<td>-3.39208000</td>
<td>-0.54634200</td>
<td>0.26390400</td>
</tr>
<tr>
<td></td>
<td>-3.80618500</td>
<td>0.74716800</td>
<td>0.56214600</td>
</tr>
<tr>
<td></td>
<td>-5.71293000</td>
<td>-0.46547500</td>
<td>-0.04299000</td>
</tr>
<tr>
<td></td>
<td>-5.21974300</td>
<td>0.83063600</td>
<td>0.37497600</td>
</tr>
<tr>
<td></td>
<td>-3.31794700</td>
<td>2.05959300</td>
<td>0.92218500</td>
</tr>
<tr>
<td></td>
<td>-5.61384400</td>
<td>2.11690500</td>
<td>0.59676800</td>
</tr>
<tr>
<td></td>
<td>-6.59294400</td>
<td>2.56732600</td>
<td>0.54219800</td>
</tr>
<tr>
<td></td>
<td>-4.52253100</td>
<td>-1.27450700</td>
<td>-0.09705500</td>
</tr>
<tr>
<td></td>
<td>-4.50730200</td>
<td>2.86436000</td>
<td>0.92453500</td>
</tr>
<tr>
<td></td>
<td>-2.20980800</td>
<td>2.51022500</td>
<td>1.18846900</td>
</tr>
<tr>
<td></td>
<td>-6.82038200</td>
<td>-0.88887100</td>
<td>-0.30474000</td>
</tr>
<tr>
<td></td>
<td>-4.62518600</td>
<td>-2.68563300</td>
<td>-0.41849700</td>
</tr>
<tr>
<td></td>
<td>-4.12224100</td>
<td>-2.92467700</td>
<td>-1.35711600</td>
</tr>
<tr>
<td></td>
<td>-4.22025000</td>
<td>-3.30710600</td>
<td>0.38132400</td>
</tr>
<tr>
<td></td>
<td>-5.68700200</td>
<td>-2.89774200</td>
<td>-0.53186400</td>
</tr>
<tr>
<td></td>
<td>-4.49655100</td>
<td>4.27294100</td>
<td>1.26297700</td>
</tr>
<tr>
<td></td>
<td>-3.45996300</td>
<td>4.55618100</td>
<td>1.43563900</td>
</tr>
<tr>
<td></td>
<td>-4.89996200</td>
<td>4.87495700</td>
<td>0.44600500</td>
</tr>
</tbody>
</table>
H -5.07255100 4.46640200 2.17082400
Br 1.47321500 -3.51076000 -0.26458800

4) NDPPBr

Pd 0.93269900 -0.00477600 -0.06433400
C 2.18003800 3.10283800 -2.77527700
C 1.82795600 1.87523600 -2.21321600
C 1.41876800 1.79469400 -0.88171200
C 1.36538900 2.96301400 -0.12158300
C 1.72072300 4.18925300 -0.68410900
C 2.13404800 4.26372000 -2.01038500
O 0.58921500 -2.04028100 0.80099600
C -0.55225600 -2.55794300 0.76788700
P 3.22603400 -0.42846700 0.29236400
O -1.59301300 -1.96791500 0.32414100
H 1.86074700 -2.55794300 0.76788700
H 1.66723200 5.08910900 -0.08126300
H 2.40797900 5.21709000 -2.44589000
H 2.48770500 3.14734100 -3.81408900
H 1.02343000 2.93531100 0.90555700
O -0.74746200 -3.96834500 1.27175700
H -1.09657500 -4.59681200 0.45055900
H 0.18082000 -4.36786400 1.67283700
H -1.52311500 -3.97788000 2.03857000
H -1.32692200 -0.82168000 -0.02193500
C 4.48446200 0.90886500 0.13890200
H 5.48385700 0.52017800 0.34370100
H 4.45052400 1.33005100 -0.86480600
H 4.25195600 1.70683500 0.84350900
C 3.53312700 -1.12210700 1.97504200
H 4.56585100 -1.46154300 2.07822700
H 3.33024400 -0.35654200 2.72428900
H 2.84869900 -1.95379100 2.13598000
C 3.85644900 -1.74929300 -0.83412000
H 4.88687400 -2.01759900 -0.59141200
H 3.21843200 -2.62733800 -0.73731600
H 3.80997900 -1.39897600 -1.86533300
C -1.25435800 0.53351900 -0.35831700
C -1.80687600 1.44059200 0.59928000
C -1.73529200 0.87277100 -1.60149400
C -2.66873500 2.39933600 0.11600300
S -2.84198100 2.20182000 -1.63139000

97
5) OBDTBr

Pd 2.00070700 0.57220300 0.26316000
C 1.90612100 -0.31787500 -3.95147600
C 2.22514700 -0.30333200 -2.59326600
C 1.54319800 0.53939600 -1.71555200
C 0.53889400 1.36864800 -2.21598300
C 0.22260700 1.35376500 -3.57485000
C 0.90730200 0.51405000 -4.44773500
O 2.63296500 0.74069800 2.41675800
C 2.03095400 0.09090800 3.29884700
P 3.56744800 2.28246200 -0.14640100
O 1.04387300 -0.69036200 3.06569300
H 3.00057400 -0.96610400 -2.22673400
H -0.56495200 1.99953100 -3.94713200
H 0.66108300 0.50366100 -5.50282900
H 2.44039800 -0.98459400 -4.61932300
H -0.01615200 2.01916500 -1.55027500
C 2.47101900 0.19278300 4.73963300
H 1.60544000 0.34290400 5.38506300
H 2.93563000 -0.75102700 5.03280600
H 3.18583500 1.00213000 4.86770100
H 0.84166500 -0.78807500 1.87463700
C 3.94927600 2.86811500 -1.85152700
H 4.69576700 3.66440700 -1.82608500
H 4.32175100 2.03594400 -2.44786600
H 3.03830400 3.23745000 -2.32388700
C 3.11541200 3.83212000 0.75157900
H 3.89815400 4.58780000 0.65698700
H 2.18262800 4.22614400 0.34814700
H 2.96368900 3.59181700 1.80342000
C 5.22313000 1.85983400 0.55182800
H 5.90456300 2.71152500 0.49946800
H 5.08948800 1.55398700 1.58864900
H 5.64801900 1.02368800 -0.00384600
C 0.47526300 -1.09261900 0.54033800
C 0.85272800 -2.34305500 0.16115200
C -0.91378500 -0.88749200 0.14486700
S -0.34992300 -3.33417800 -0.65526800
C -1.49429600 -1.99817800 -0.52776600
C -1.70407400 0.25086700 0.34815100
C -2.79192100 -2.00625600 -1.01194800
C -3.00650400 0.25056500 -0.14249400
C -3.57660300 -0.86479500 -0.80515900
S -4.16029000 1.58312500 -0.04592800
C -4.94045500 -0.62549400 -1.19324600
C -5.37555800 0.60954800 -0.85938100
H -5.55427400 -1.36341600 -1.68908000
H -6.35129400 1.03450100 -1.03591400
Br 2.55180500 -3.14413900 0.47074200
O -3.30327200 -3.12436100 -1.63323800
O -1.18634900 1.37695500 0.94932400
C -1.51004500 1.53000700 2.34060300
H -1.11214600 0.69790100 2.92431800
H -1.03986400 2.45875300 2.65945600
H -2.59040200 1.60371200 2.48897100
C -3.21567000 -3.10874500 -3.06513400
H -3.63633600 -4.05269500 -3.40656500
H -3.78936600 -2.27897000 -3.48710200
H -2.17622000 -3.03127500 -3.39452300
6) ThioBr

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>1.98400500</td>
<td>0.58573500</td>
<td>0.22237200</td>
</tr>
<tr>
<td>C</td>
<td>1.75336000</td>
<td>-0.21256600</td>
<td>-4.01059900</td>
</tr>
<tr>
<td>C</td>
<td>2.07902400</td>
<td>-0.25880100</td>
<td>-2.65515900</td>
</tr>
<tr>
<td>C</td>
<td>1.49878100</td>
<td>0.63405700</td>
<td>-1.75333700</td>
</tr>
<tr>
<td>C</td>
<td>0.59126100</td>
<td>1.57771100</td>
<td>-2.23855200</td>
</tr>
<tr>
<td>O</td>
<td>0.26314400</td>
<td>1.62237800</td>
<td>-3.59410000</td>
</tr>
<tr>
<td>O</td>
<td>0.84543200</td>
<td>0.72839300</td>
<td>-4.48635300</td>
</tr>
<tr>
<td>O</td>
<td>2.60234100</td>
<td>0.70870200</td>
<td>2.37685700</td>
</tr>
<tr>
<td>C</td>
<td>1.99206300</td>
<td>0.04229100</td>
<td>3.24412600</td>
</tr>
<tr>
<td>P</td>
<td>3.56730800</td>
<td>2.30489700</td>
<td>-0.12333800</td>
</tr>
<tr>
<td>O</td>
<td>1.02851300</td>
<td>-0.75594200</td>
<td>2.98770100</td>
</tr>
<tr>
<td>H</td>
<td>2.77989400</td>
<td>-1.00906700</td>
<td>-2.30865900</td>
</tr>
<tr>
<td>H</td>
<td>-0.44883900</td>
<td>2.35947100</td>
<td>-3.94911300</td>
</tr>
<tr>
<td>H</td>
<td>0.59201200</td>
<td>0.76196900</td>
<td>-5.53912700</td>
</tr>
<tr>
<td>H</td>
<td>2.20938500</td>
<td>-0.92070200</td>
<td>-4.69357900</td>
</tr>
<tr>
<td>H</td>
<td>0.12487000</td>
<td>2.28781900</td>
<td>-1.56487600</td>
</tr>
<tr>
<td>C</td>
<td>2.40216900</td>
<td>0.14968600</td>
<td>4.69380800</td>
</tr>
<tr>
<td>H</td>
<td>1.52049700</td>
<td>0.28002100</td>
<td>5.32135900</td>
</tr>
<tr>
<td>H</td>
<td>2.88079600</td>
<td>0.78496400</td>
<td>4.99371000</td>
</tr>
<tr>
<td>H</td>
<td>3.09708900</td>
<td>0.97355800</td>
<td>4.83817600</td>
</tr>
<tr>
<td>H</td>
<td>0.85812200</td>
<td>-0.84911000</td>
<td>1.78063400</td>
</tr>
<tr>
<td>C</td>
<td>3.97441500</td>
<td>2.92975200</td>
<td>-1.80907300</td>
</tr>
<tr>
<td>H</td>
<td>4.73684200</td>
<td>3.70941800</td>
<td>-1.75644800</td>
</tr>
<tr>
<td>H</td>
<td>4.33605900</td>
<td>2.10612100</td>
<td>-2.42386000</td>
</tr>
<tr>
<td>H</td>
<td>3.07576300</td>
<td>3.32615700</td>
<td>-2.27997500</td>
</tr>
<tr>
<td>C</td>
<td>3.14831300</td>
<td>3.83945200</td>
<td>0.81679900</td>
</tr>
<tr>
<td>H</td>
<td>3.95407500</td>
<td>4.57424100</td>
<td>0.75694800</td>
</tr>
<tr>
<td>H</td>
<td>2.23439400</td>
<td>4.27657800</td>
<td>0.41416500</td>
</tr>
<tr>
<td>H</td>
<td>2.97481400</td>
<td>3.57086300</td>
<td>1.85839600</td>
</tr>
<tr>
<td>C</td>
<td>5.20952900</td>
<td>1.82521600</td>
<td>0.56951800</td>
</tr>
<tr>
<td>H</td>
<td>5.91198900</td>
<td>2.66070800</td>
<td>0.53889100</td>
</tr>
<tr>
<td>H</td>
<td>5.06512300</td>
<td>1.49787600</td>
<td>1.59827900</td>
</tr>
<tr>
<td>H</td>
<td>5.61483300</td>
<td>0.99200800</td>
<td>-0.00494200</td>
</tr>
<tr>
<td>C</td>
<td>0.52457400</td>
<td>-1.12522000</td>
<td>0.44397100</td>
</tr>
<tr>
<td>C</td>
<td>0.95660300</td>
<td>-2.34736700</td>
<td>0.01011500</td>
</tr>
<tr>
<td>C</td>
<td>-0.89304300</td>
<td>-0.97902100</td>
<td>0.14751900</td>
</tr>
<tr>
<td>S</td>
<td>-0.26591200</td>
<td>-3.32086500</td>
<td>-0.74908500</td>
</tr>
<tr>
<td>C</td>
<td>-1.45785700</td>
<td>-2.04952600</td>
<td>-0.48330300</td>
</tr>
<tr>
<td>Br</td>
<td>2.70781000</td>
<td>-3.07235600</td>
<td>0.20145500</td>
</tr>
<tr>
<td>C</td>
<td>-2.85903800</td>
<td>-2.25267200</td>
<td>-0.97163200</td>
</tr>
<tr>
<td>H</td>
<td>-3.53441800</td>
<td>-1.53740600</td>
<td>-0.50203400</td>
</tr>
</tbody>
</table>
H -2.93363600 -2.11249400 -2.05422000
H -3.22789200 -3.25505900 -0.74273500
C -1.64411000 0.26494200 0.53690700
H -1.51638200 1.05325800 -0.20982600
H -2.71427400 0.08452100 0.64487500
H -1.27186800 0.65138800 1.48731800

7) TVTBr

Pd 2.00845900 0.51826300 0.24644600
C 1.86627300 -0.26215000 -3.99001600
C 2.21703700 -0.25877400 -2.63974100
C 1.49790800 0.50712700 -1.72239400
C 0.42310400 1.27046400 -2.17968900
C 0.07234200 1.26618200 -3.52994300
C 0.79525000 0.50270000 -4.44074100
O 2.65426400 0.70973400 2.38316000
C 2.12835000 -0.01367700 3.26238200
P 3.39547700 2.38651500 -0.13072900
O 1.24483600 -0.90178800 3.02370400
H 3.04779800 -0.87190600 -2.31003100
H -0.77076500 1.85944300 -3.86623700
H 0.52199600 0.49797500 -5.48897800
H 2.43142000 -0.87023600 -4.68760000
H -0.16034700 1.86759300 -1.48785100
C 2.55188700 0.13990400 4.70421200
H 3.08431500 -0.76141500 5.01445500
H 3.19924000 1.00492200 4.82707600
H 1.67096700 0.23176000 5.34001600
H 1.03744000 -0.99894300 -1.81088000
C 3.65838000 3.07895500 -1.81769300
H 4.33659400 3.93361200 -1.78072600
H 4.07470200 2.30895200 -2.46620600
H 2.70209600 3.38654800 -2.23892400
C 2.86206200 3.84925100 0.86228900
H 3.58825000 4.66149400 0.78809400
H 1.89350700 4.19938700 0.50514200
H 2.75911400 3.54253200 1.90257800
C 5.10509200 2.06119300 0.48375200
H 5.71628900 2.96553700 0.45149900
H 5.03640000 1.69569000 1.50758000
H 5.57023300 1.28942600 -0.12976700
C 0.66890700 -1.29908300 0.50227400
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.12893100</td>
<td>-2.50106400</td>
<td>0.03138100</td>
</tr>
<tr>
<td>C</td>
<td>-0.73317200</td>
<td>-1.19785500</td>
<td>0.20333800</td>
</tr>
<tr>
<td>S</td>
<td>-0.06865100</td>
<td>-3.49302800</td>
<td>-0.75852000</td>
</tr>
<tr>
<td>C</td>
<td>-1.29730200</td>
<td>-2.25652700</td>
<td>-0.45996100</td>
</tr>
<tr>
<td>Br</td>
<td>2.89522900</td>
<td>-3.18222000</td>
<td>0.18863400</td>
</tr>
<tr>
<td>H</td>
<td>-1.32624200</td>
<td>-0.33807100</td>
<td>0.49014300</td>
</tr>
<tr>
<td>C</td>
<td>-2.67102700</td>
<td>-2.38817900</td>
<td>-0.86783900</td>
</tr>
<tr>
<td>H</td>
<td>-3.28784700</td>
<td>-1.53242100</td>
<td>-0.60501600</td>
</tr>
<tr>
<td>C</td>
<td>-3.23350600</td>
<td>-3.42753800</td>
<td>-1.51553500</td>
</tr>
<tr>
<td>H</td>
<td>-2.61750500</td>
<td>-4.28330800</td>
<td>-1.77884200</td>
</tr>
<tr>
<td>C</td>
<td>-4.61015500</td>
<td>-3.55229900</td>
<td>-1.92216800</td>
</tr>
<tr>
<td>C</td>
<td>-5.17662500</td>
<td>-4.61737300</td>
<td>-2.58354700</td>
</tr>
<tr>
<td>S</td>
<td>-5.83016100</td>
<td>-2.31593500</td>
<td>-1.62540700</td>
</tr>
<tr>
<td>C</td>
<td>-6.56126100</td>
<td>-4.45934300</td>
<td>-2.85387600</td>
</tr>
<tr>
<td>H</td>
<td>-4.60522600</td>
<td>-5.49134000</td>
<td>-2.86617300</td>
</tr>
<tr>
<td>C</td>
<td>-7.05818700</td>
<td>-3.27454900</td>
<td>-2.40096400</td>
</tr>
<tr>
<td>H</td>
<td>-7.16262700</td>
<td>-5.19831300</td>
<td>-3.36485700</td>
</tr>
<tr>
<td>H</td>
<td>-8.06607400</td>
<td>-2.89823300</td>
<td>-2.47000700</td>
</tr>
</tbody>
</table>
6. Table S1. Several conditions tested reported in literature.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalytic system</th>
<th>Solvent</th>
<th>Conc. Temp (°C)</th>
<th>time</th>
<th>yield Mn/Mw PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1^{11}</td>
<td>Pd(Herrmann) (2.5%); P(o-NMe₂Ph)₃P (10%); Cs₂CO₃ (3eq); NDA (1eq)</td>
<td>THF, 0.5M, 120</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S2^{12}</td>
<td>Pd(Herrmann) (2.5%); P(o-NMe₂Ph)₃P (10%); Cs₂CO₃ (3eq)</td>
<td>THF, 0.5M, 120</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S3^{11}</td>
<td>Pd(Herrmann) (4%); P(o-NMe₂Ph)₃P (16%); Cs₂CO₃ (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S4^{11}</td>
<td>Pd(Herrmann) (2.5%); P(o-OMeC₆H₄)₃P (10%); Cs₂CO₃ (3eq); PivOH (1eq)</td>
<td>1,4-dioxane, 0.5M, 125</td>
<td>48h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S5^{13}</td>
<td>Pd,dba₃ (1%); K₂CO₃ (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M 100</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S6^{11,14}</td>
<td>Pd(2’-2’bipy)Cl₂ (10%); Cs₂CO₃ (3 eq); NDA (1 eq)</td>
<td>Chlorobenzene</td>
<td></td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>Pd(PPh₃)₂Cl₂ (5%); P(o-OMeC₆H₄)₃P (10%); Cs₂CO₃ (3 eq); PivOH (1 eq)</td>
<td>1,4-dioxane, 0.5M, 125</td>
<td>48h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>Pd(OAc)₂ (5%); Cs₂CO₃ (2 eq)</td>
<td>DMAC, 0.5M, 125</td>
<td>24h</td>
<td>Monomers degradation</td>
<td></td>
</tr>
<tr>
<td>S9^{15}</td>
<td>Pd₂dba₃ (2.5%); P(o-OMeC₆H₄)₃P (10%); K₂CO₃ (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>Pd(PPh₃)₂Cl₂ (5%); P(o-NMe₂Ph)₃P (10%); Cs₂CO₃ (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td>Pd(PPh_3)_2Cl_2 (5%); Xphos (10%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td>Pd(PPh_3)_2Cl_2 (5%); Davephos (10%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>Pd(PPh_3)_2Cl_2 (5%); Sphos (10%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S14</td>
<td>Pd(OAc)_2 (5%); 1,2bis(dicyclohexylphosphin o)ethane (20%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S15</td>
<td>Pd(OAc)_2 (5%); (2-4-6-OMeC_6H_2)_3P (20%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td>Pd(OAc)_2 (5%); 2-(Di-t- butylphosphino)biphenyl (20%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
<tr>
<td>S17</td>
<td>Pd(OAc)_2 (5%); tri-2-pyridyl phosphine (20%); Cs_2CO_3 (3 eq); PivOH (1 eq)</td>
<td>Toluene, 0.5M, 125</td>
<td>24h</td>
<td>No Polymerisation</td>
<td></td>
</tr>
</tbody>
</table>
Table S2. Properties of reference polymers by Migita-Stille coupling.

<table>
<thead>
<tr>
<th></th>
<th>M_n (kg/mol)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1S</td>
<td>56</td>
<td>3.2</td>
<td>59</td>
<td>754/690</td>
</tr>
<tr>
<td>P2S</td>
<td>22</td>
<td>1.9</td>
<td>89</td>
<td>690/425</td>
</tr>
<tr>
<td>P3S</td>
<td>57</td>
<td>2.9</td>
<td>85</td>
<td>748/685</td>
</tr>
<tr>
<td>P4S</td>
<td>30</td>
<td>2.0</td>
<td>90</td>
<td>639/418</td>
</tr>
</tbody>
</table>

Table S3. Effect of the ligand for the synthesis of P1H.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kg/mol)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1S</td>
<td>1</td>
<td>56</td>
<td>3.2</td>
<td>59</td>
<td>754/690</td>
</tr>
<tr>
<td>P1H-L_{REF}</td>
<td>0.5</td>
<td>21</td>
<td>2.7</td>
<td>75</td>
<td>753/690</td>
</tr>
<tr>
<td>P1H-L1</td>
<td>L1</td>
<td>1</td>
<td>2.5</td>
<td>73</td>
<td>753/690</td>
</tr>
<tr>
<td>P1H-L2</td>
<td>L2</td>
<td>1</td>
<td>2.6</td>
<td>73</td>
<td>757/690</td>
</tr>
<tr>
<td>P1H-L3</td>
<td>L3</td>
<td>1</td>
<td>2.7</td>
<td>74</td>
<td>758/690</td>
</tr>
<tr>
<td>P1H-L4</td>
<td>L4</td>
<td>1</td>
<td>2.6</td>
<td>75</td>
<td>758/690</td>
</tr>
<tr>
<td>P1H-L5</td>
<td>L5</td>
<td>1</td>
<td>3.0</td>
<td>65</td>
<td>758/690</td>
</tr>
</tbody>
</table>

Table S4. Effect of the ligand for the synthesis of P2H.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kg/mol)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2S</td>
<td>48</td>
<td>22</td>
<td>1.9</td>
<td>89</td>
<td>690/425</td>
</tr>
<tr>
<td>P2H-L_{REF}</td>
<td>12</td>
<td>14</td>
<td>2.2</td>
<td>39</td>
<td>678/411</td>
</tr>
<tr>
<td>P2H-L1</td>
<td>L1</td>
<td>2</td>
<td>14</td>
<td>3.3</td>
<td>686/410</td>
</tr>
<tr>
<td>P2H-L2</td>
<td>L2</td>
<td>2</td>
<td>20</td>
<td>70</td>
<td>686/412</td>
</tr>
<tr>
<td>P2H-L3</td>
<td>L3</td>
<td>2</td>
<td>21</td>
<td>72</td>
<td>692/419</td>
</tr>
<tr>
<td>P2H-L4</td>
<td>L4</td>
<td>2</td>
<td>21</td>
<td>72</td>
<td>692/419</td>
</tr>
<tr>
<td>P2H-L5</td>
<td>L5</td>
<td>2</td>
<td>18</td>
<td>61</td>
<td>691/415</td>
</tr>
</tbody>
</table>

Table S5. Effect of the ligand for the synthesis of P3H.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kDa)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3S</td>
<td>5</td>
<td>57</td>
<td>2.9</td>
<td>85</td>
<td>748/685</td>
</tr>
<tr>
<td>P3S</td>
<td>6</td>
<td>67</td>
<td>3.2</td>
<td>90</td>
<td>748/685</td>
</tr>
<tr>
<td>P3H-L_{REF}</td>
<td>2</td>
<td>27</td>
<td>3.0</td>
<td>53</td>
<td>740/677</td>
</tr>
<tr>
<td>P3H-L1</td>
<td>L1</td>
<td>2</td>
<td>28</td>
<td>3.5</td>
<td>748/685</td>
</tr>
<tr>
<td>P3H-L2</td>
<td>L2</td>
<td>2</td>
<td>35</td>
<td>2.7</td>
<td>749/685</td>
</tr>
<tr>
<td>P3H-L3</td>
<td>L3</td>
<td>3</td>
<td>21</td>
<td>2.9</td>
<td>746/685</td>
</tr>
<tr>
<td>P3H-L4</td>
<td>L4</td>
<td>3</td>
<td>34</td>
<td>3.3</td>
<td>748/685</td>
</tr>
<tr>
<td>P3H-L5</td>
<td>L5</td>
<td>3</td>
<td>39</td>
<td>2.9</td>
<td>750/685</td>
</tr>
</tbody>
</table>
Table S6. Effect of the ligand for the synthesis of P4H.

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kDa)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4S-High</td>
<td>3</td>
<td>30</td>
<td>2</td>
<td>90</td>
<td>639/418</td>
</tr>
<tr>
<td>P4S-Low</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>90</td>
<td>617/414</td>
</tr>
<tr>
<td>P4S-20HC</td>
<td>3</td>
<td>30</td>
<td>2.1</td>
<td>90</td>
<td>627/428</td>
</tr>
<tr>
<td>P4S-20D</td>
<td>3</td>
<td>20</td>
<td>1.8</td>
<td>90</td>
<td>616/413</td>
</tr>
<tr>
<td>P4S-10D</td>
<td>3</td>
<td>22</td>
<td>1.8</td>
<td>90</td>
<td>621/414</td>
</tr>
<tr>
<td>P4H-REF</td>
<td>LREF</td>
<td>12</td>
<td>10</td>
<td>2.2</td>
<td>35</td>
</tr>
<tr>
<td>P4H-L1</td>
<td>L1</td>
<td>12</td>
<td>17</td>
<td>2.2</td>
<td>90</td>
</tr>
<tr>
<td>P4H-L2</td>
<td>L2</td>
<td>12</td>
<td>27</td>
<td>2.9</td>
<td>92</td>
</tr>
<tr>
<td>P4H-L3</td>
<td>L3</td>
<td>12</td>
<td>19</td>
<td>2.4</td>
<td>90</td>
</tr>
<tr>
<td>P4H-L4</td>
<td>L4</td>
<td>12</td>
<td>30</td>
<td>3.2</td>
<td>95</td>
</tr>
<tr>
<td>P4H-L5</td>
<td>L5</td>
<td>12</td>
<td>22</td>
<td>2.4</td>
<td>93</td>
</tr>
</tbody>
</table>

Table S7. Effect of the ligand for the synthesis of P1H’

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kDa)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1S</td>
<td>1</td>
<td>56</td>
<td>3.2</td>
<td>59</td>
<td>754/690</td>
</tr>
<tr>
<td>P1H’-REF</td>
<td>LREF</td>
<td>12</td>
<td>21</td>
<td>5.1</td>
<td>34</td>
</tr>
<tr>
<td>P1H’-L1</td>
<td>L1</td>
<td>12</td>
<td>21.5</td>
<td>4.3</td>
<td>677/738</td>
</tr>
<tr>
<td>P1H’-L2</td>
<td>L2</td>
<td>12</td>
<td>17.5</td>
<td>4.1</td>
<td>743/681</td>
</tr>
<tr>
<td>P1H’-L3</td>
<td>L3</td>
<td>12</td>
<td>12.5</td>
<td>2.8</td>
<td>740/678</td>
</tr>
<tr>
<td>P1H’-L4</td>
<td>L4</td>
<td>12</td>
<td>29</td>
<td>2.7</td>
<td>740/677</td>
</tr>
<tr>
<td>P1H’-L5</td>
<td>L5</td>
<td>12</td>
<td>13</td>
<td>2.9</td>
<td>746/682</td>
</tr>
</tbody>
</table>

Table S8. Effect of the ligand for the synthesis of P2H’

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kDa)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2S</td>
<td>48</td>
<td>22</td>
<td>1.9</td>
<td>89</td>
<td>690/425</td>
</tr>
<tr>
<td>P2H’-REF</td>
<td>LREF</td>
<td>20</td>
<td>15</td>
<td>5</td>
<td>596/399</td>
</tr>
<tr>
<td>P2H’-L1</td>
<td>L1</td>
<td>20</td>
<td>11</td>
<td>3</td>
<td>606/404</td>
</tr>
<tr>
<td>P2H’-L2</td>
<td>L2</td>
<td>20</td>
<td>15</td>
<td>3</td>
<td>616/407</td>
</tr>
<tr>
<td>P2H’-L3</td>
<td>L3</td>
<td>4</td>
<td>16</td>
<td>2.5</td>
<td>607/403</td>
</tr>
<tr>
<td>P2H’-L4</td>
<td>L4</td>
<td>4</td>
<td>17</td>
<td>2.5</td>
<td>627/407</td>
</tr>
<tr>
<td>P2H’-L5</td>
<td>L5</td>
<td>4</td>
<td>13</td>
<td>2.2</td>
<td>619/406</td>
</tr>
</tbody>
</table>
Table S9. Effect of the ligand for the synthesis of P3H'

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>Time (h)</th>
<th>M_n (kDa)</th>
<th>D</th>
<th>Yield (%)</th>
<th>λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3S</td>
<td>6</td>
<td>67</td>
<td>3.2</td>
<td>90</td>
<td>748/685</td>
</tr>
<tr>
<td>P3H'-LREF</td>
<td>LREF</td>
<td>2</td>
<td>18</td>
<td>3</td>
<td>676/739</td>
</tr>
<tr>
<td>P3H'-L1</td>
<td>L1</td>
<td>2</td>
<td>10</td>
<td>2.7</td>
<td>678/742</td>
</tr>
<tr>
<td>P3H'-L2</td>
<td>L2</td>
<td>2</td>
<td>10</td>
<td>3.8</td>
<td>678/744</td>
</tr>
<tr>
<td>P3H'-L3</td>
<td>L3</td>
<td>2</td>
<td>26</td>
<td>4.1</td>
<td>679/743</td>
</tr>
<tr>
<td>P3H'-L4</td>
<td>L4</td>
<td>2</td>
<td>13</td>
<td>3.4</td>
<td>677/741</td>
</tr>
<tr>
<td>P3H'-L5</td>
<td>L5</td>
<td>2</td>
<td>12</td>
<td>4.4</td>
<td>680/745</td>
</tr>
</tbody>
</table>

Datablock: tb0909_a_a

<table>
<thead>
<tr>
<th>Bond precision: C-C</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C = 0.0029 Å</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell:</th>
<th>reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=10.2109(13)</td>
<td>b=18.659(2)</td>
</tr>
<tr>
<td>alpha=90</td>
<td>c=35.308(4)</td>
</tr>
<tr>
<td>beta=94.153(2)</td>
<td>gamma=90</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature: 150 K</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>6709.4(14)</td>
</tr>
<tr>
<td>Calculated</td>
<td>6709.2(14)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
</tr>
<tr>
<td></td>
<td>P 1 21/c 1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2ybc</td>
</tr>
<tr>
<td></td>
<td>-P 2ybc</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C38.93 H49 O3 P, C39 H51</td>
</tr>
<tr>
<td></td>
<td>O3 P, 1.71(H)</td>
</tr>
<tr>
<td></td>
<td>2(C38.93 H50.7 O3 P)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum formula</td>
<td>C77.93 H101.71 O6 P2</td>
</tr>
<tr>
<td></td>
<td>C78 H102 O6 P2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>1.184</td>
</tr>
<tr>
<td></td>
<td>1.186</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dm (g cm-3)</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm-1)</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>F000</td>
<td>2589.1</td>
</tr>
<tr>
<td></td>
<td>2592.0</td>
</tr>
<tr>
<td>F000'</td>
<td>2590.95</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>14,26,49</td>
</tr>
<tr>
<td></td>
<td>14,26,49</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Nref</td>
<td>19261</td>
</tr>
<tr>
<td></td>
<td>19234</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.958,0.971</td>
</tr>
<tr>
<td></td>
<td>0.679,0.746</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.954</td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.679 Tmax=0.746
AbsCorr = MULTI-SCAN

Data completeness= 0.999 Theta(max)= 29.829
R(reflections)= 0.0578(14710) wR2(reflections)= 0.1548(19234)
S = 1.022 Npar= 835
Additional crystallographic data for L5.

Datablock: tb20160923_0m_a

Bond precision: C-C = 0.0032 Å
Wavelength=0.71073 Å

<table>
<thead>
<tr>
<th>Cell:</th>
<th>a=10.8957(14)</th>
<th>b=13.0496(16)</th>
<th>c=13.9607(17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>101.403(2)</td>
<td>beta=109.481(2)</td>
<td>gamma=104.921(2)</td>
</tr>
</tbody>
</table>

Temperature: 150 K

<table>
<thead>
<tr>
<th>Volume</th>
<th>1718.4(4)</th>
<th>1718.4(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P -1</td>
<td>P -1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
<td>-P 1</td>
</tr>
</tbody>
</table>

Moiey formula C39 H50.15 O3 P, 0.036(H)
Sum formula C39 H50.99 O3 P

Mr = 598.76
Dx, g cm^-3 = 1.157
Z = 2
Mu (mm^-1) = 0.115
F000 = 648.0
F000' = 648.43
h,k,lmax = 15,18,19
Nref = 9738
Tmin,Tmax = 0.946,0.955
Tmin' = 0.944

Correction method = # Reported T Limits: Tmin=0.676 Tmax=0.746
AbsCorr = MULTI-SCAN

Data completeness = 0.994
theta(max) = 29.664

R(reflections)= 0.0542(7182)
wR2(reflections)= 0.1506(9684)

S = 1.052
Nper= 427
8. Additional references:

