## Highly Efficient Enantioselective Liquid Liquid Extraction of 1,2-Amino-Alcohols via SPINOL Based Phosphoric Acid Hosts.

### Erik B. Pinxterhuis,<sup>†</sup> Jean-Baptiste Gualtierotti,<sup>†</sup> H.J. Heeres, Johannes G. de Vries<sup>\*</sup> and Ben L. Feringa<sup>\*</sup>

correspondence to: b.l.feringa@rug.nl; Johannes.devries@catalysis.de

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

## Contents

| 1. | General info:                                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | General synthetic route towards (R)- and (S)- 2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (Spinol)4                                      |
|    | S1: 1,5-bis(3-methoxyphenyl)penta-1,4-dien-3-one4                                                                                                |
|    | S2: 1,5-bis(3-methoxyphenyl)pentan-3-one5                                                                                                        |
|    | S3 1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one5                                                                                                 |
|    | S4: 4,4'-dibromo-7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]6                                                                       |
|    | S5: 7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]6                                                                                    |
|    | 3: Spinol7                                                                                                                                       |
|    | 3': S/R-spinol                                                                                                                                   |
| 3. | Synthesis of Spinol based phosphoric acids8                                                                                                      |
|    | SPA 1: (S)-12-hydroxy-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-<br>oxide                                            |
|    | General scheme for the synthesis of phosphoric acids SPA 2-4                                                                                     |
|    | S8: (R)-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]10                                                                     |
|    | S9: (R)-6,6'-diiodo-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]10                                                         |
|    | S10a: (R)-6,6'-diphenyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol11                                                                    |
|    | SPA 2: (R)-12-hydroxy-1,10-diphenyl-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-<br>fg][1,3,2]dioxaphosphocine 12-oxide11                            |
|    | S10b: (R)-6,6'-bis(3,5-bis(trifluoromethyl)phenyl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-<br>diol12                                     |
|    | SPA 3: (R)-1,10-bis(3,5-bis(trifluoromethyl)phenyl)-12-hydroxy-4,5,6,7-tetrahydrodiindeno[7,1-<br>de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide13 |
|    | S10c': (1R,6r,6's)-6,6'-di(anthracen-9-yl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol14                                                 |
|    | S10c : (1R,6r,6's)-6,6'-di(anthracen-9-yl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol14                                                 |
|    | SPA 4: (1r,5aR,10s,12S)-1,10-di(anthracen-9-yl)-12-hydroxy-4,5,6,7-tetrahydrodiindeno [7,1-<br>de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide15    |
| 4. | General procedures for ELLE experiments16                                                                                                        |
|    | GP 1) General procedure for biphasic batch extraction experiments16                                                                              |
|    | GP 2) General procedure for the U-tube reactor experiments16                                                                                     |
|    | GP 3) General procedure for the triphasic reactor system experiments16                                                                           |
| 5. | Enantioselectivities, distributions and $\alpha_{op}$ for all experiments17                                                                      |
|    | Guest Screening for SPA 1-417                                                                                                                    |
|    | Temperature Screening on 11 with SPA 2,417                                                                                                       |
|    | Guest to Host Screening on 11 with SPA 2,419                                                                                                     |

|    | pH Screening on 11 with SPA 2,4      | 21 |
|----|--------------------------------------|----|
|    | Solvent Screening on 11 with SPA 2,4 | 24 |
|    | Amino-Alcohol Screening with SPA 2,4 | 27 |
|    | pH Screening on 28 with SPA 2,4      | 27 |
|    | U-tube                               | 30 |
|    | Tri-phase reactor                    | 31 |
| 6. | Spectroscopic data                   | 32 |
| 9  | SFC traces                           | 32 |
|    | Racemic Spinol                       | 32 |
|    | (R)-Spinol                           | 32 |
|    | (S)-Spinol                           | 32 |
| I  | HPLC traces                          | 33 |
|    | 11: Phenylglycinol                   | 33 |
| 1  | NMR                                  | 35 |

### 1. General info:

Chromatography: Merck silica gel type 9385 230-400 mesh, TLC: Merck silica gels 60, 0.25 mm. Conversions of the reactions were determined by TLC unless otherwise stated. Components were visualized by UV and potassium permanganate staining. Mass spectra were recorded on an AEI-MS-902 mass spectrometer (EI+) or a LTQ Orbitrap XL (ESI+). <sup>1</sup>H- and <sup>13</sup>C-NMR were recorded on a Varian AMX400 (400 and 101 MHz, respectively) or a Varian VXR300 (300 and 75 MHz, respectively) using CDCl<sub>3</sub> as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl<sub>3</sub>:  $\delta$  7.26 for <sup>1</sup>H,  $\delta$  77.0 for <sup>13</sup>C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. All reactions were carried out under nitrogen or argon atmosphere in either oven dried round bottom flasks (gram scale or above) or oven dried sealed tubes (sub-gram scale) using standard Schlenk techniques. Diethyl ether, tetrahydrofuran, dichloromethane and toluene were used from the solvent purification system (MBRAUN SPS systems, MB-SPS-800). All catalysts, ligands, reagents and other solvents were purchased from commercial sources and used as received without further purification unless otherwise stated, except organo-lithium reagents which were titrated before use using diphenylacetic acid. When needed degassing of solvents was performed via the freeze, pump, thaw technique. SFC measurements were performed on a Waters Thar SFC system on a Chiralpak IA using as conditions 85% CO<sub>2</sub> / 15% CH<sub>3</sub>OH, 150 bar, 4 mL/min. RP-HPLC measurements were performed on a Shimadzu SIL-20A with a CTO-20AC column oven and LC-20AD pumps on a CROWNPAK® CR(-) chiral column (Daicel, Japan) equipped with a guard column. Calibration curves were prepared in the concentration range employed for the determination of the distribution. Uncertainties were typically lower than 2.0%. General HPLC conditions for enantiomeric separation of aryl-1,2- and aryl-2,1amino alcohols: Perchloric acid solutions (pH =1,5 or pH =1) flow = 1.0 ml/min were used as eluent, with exception of serine (**8**), phenylalanine (**16**), homoserine (**17**), 3-amino-3-phenyl-1-propanol (**19**) and normethaneprhrine (**24**) where flow of 0,5 ml/min was applied. Column temperature was set at 20°C, with exception of 3-aminoisobuteric acid (**18**), where 0°C was applied.

# 2. General synthetic route towards (*R*)- and (*S*)- 2,2',3,3'- tetrahydro-1,1'-spirobi[indene]-7,7'-diol (Spinol).

Spinol was synthetized as follows according to the method described by Birman *et al.*<sup>1</sup> with minor modifications, all spectroscopic data matching, and was resolved according to method described by Deng and Ye with minor modifications.<sup>2</sup>



Scheme 1: Synthetic route towards (*R*)- and (*S*)-spinol. Reaction conditions: a) Me<sub>2</sub>CO, NaOH, 50% EtOH-H<sub>2</sub>O, r.t, 60%. b) Raney Ni, H<sub>2</sub>, Me<sub>2</sub>CO, r.t 95% c) Br<sub>2</sub>, pyridine, DCM, 0°C. 95% d) SiO2-SOOH, r.t, neat, 65%. e) "BuLi, THF, -78°C, 95%. f) BBr<sub>3</sub>, DCM, -78°C, 85%. g) N-Benzylcinchonidinium chloride, toluene, reflux. h) HCl, (R)-spinol 90%, >99% ee, (S)-spinol 80%, >99% ee.

#### S1: 1,5-bis(3-methoxyphenyl)penta-1,4-dien-3-one



A solution of *m*-anisaldehyde (10.0 g, 73.4 mmol, 2 equiv) and acetone (2.70 ml, 36.8 mmol, 1 equiv) in ethanol (20 ml) was added dropwise to a solution of NaOH (7.5 g, 190 mmol, 2.5 equiv) in 120 ml

<sup>&</sup>lt;sup>1</sup> V. B. Birman, A. L. Rheingold, K.-C. Lam, *Tet. Asym.* **1999**, *10*, 125-131.

<sup>&</sup>lt;sup>2</sup> J.-H. Zhang, J. Liao, X. Cui, K.-B. Yu, J. Zhu, J.-G. Deng, S.-F. Zhu, L.-X. Wang, Q.-L. Zhou, L. W. Chung, T. Ye, *Tet. Asym.* **2002**, *13*, 1363-1366

of ethanol/H2O (1:1, 0.25 M) at 0 °C. The mixture was stirred for 3 h, then diluted with  $CH_2Cl_2$ , washed with water, dried over  $Na_2SO_4$ , and purified by FCC (PE/AcOEt, 9/1) to give 6.6 g of 1,5-bis(3-methoxyphenyl)pentan-3-one (62% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, J = 16 Hz, 2H ), 7.34 (t, J = 8 Hz, 2H ), 7.22 (d, J = 8 Hz, 2H ), 7.13 (s, 2H), 7.07 (d, J = 16 Hz, 2H), 6.97 (dd, J = 8, 2 Hz, 2H), 3.86 (s, 6H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 189.0, 160.0, 143.3, 136.2, 130.0, 125.7, 121.1, 116.4, 113.3, 55.4.

S2: 1,5-bis(3-methoxyphenyl)pentan-3-one



A solution of 1,5-bis(3-methoxyphenyl)penta-1,4-dien-3-one (20.0 g, 68 mmol, 1 equiv) in acetone (200 ml, 0.35 M) was stirred with Raney Ni (2 g) under an atmosphere of hydrogen at rt under very vigorous stirring (1500 rpm, large stir bar, formation of a big vortex) for 1h, if the stirring is not strong enough the reaction will take up to 48 h to complete. The suspension was filtered on celite (AcOEt) and concentrated under vacuum to give 19.65 g clean 1,5-bis(3-methoxyphenyl)pentan-3-one (95% yield).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 7.19 (t, J = 8 Hz, 2H), 6.75-6.69 (m, 6H), 3.78 (s, 6H), 2.86 (t, J = 8 Hz, 4H), 2.71 (t, J = 8 Hz, 4H)

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 209.0, 159.6, 142.6, 129.4, 120.6, 114.1, 111.4, 55.1, 44.4, 29.8.

S3 1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one



Crude 1,5-bis(3-methoxyphenyl)pentan-3-one (19.65 g, 66 mmol, 1 equiv) was dissolved in  $CH_2Cl_2$  (220 ml, 0.3 M total), pyridine (15.95 ml, 198 mmol, 3 equiv.) was added, and the mixture was cooled to 0 °C. A solution of bromine in  $CH_2Cl_2$  (10% v/v, 8.5 ml, 165 mmol, 2.5 equiv.) was added drop wise. The reaction mixture was allowed to warm to rt and stirred until the starting material had disappeared (by NMR, 3h). The mixture was diluted with DCM, washed with aqueous NaHSO<sub>3</sub> to remove excess bromine, then with HCl 1M and water, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum to give 30.5 g of 1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one (95% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.39 (d, *J* = 9 Hz, 2H), 6.77 (d, *J* = 3 Hz, 2H), 6.63 (dd, *J* = 9, 3 Hz, 2H), 3.78 (s, 6H), 2.96 (t, *J* = 8 Hz, 4H), 2.72 (t, J = 8 Hz, 4H)

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 208.6, 159.1, 141.3, 133.5, 116.3, 114.8, 113.8, 55.6, 42.7, 30.7.

S4: 4,4'-dibromo-7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]



To a solution of 1,5-bis(2-bromo-5-methoxyphenyl)pentan-3-one (5g, 11.45 mmol, 1 equiv) in DCM (112ml, 0.1M) at 0°C was added 50g of silica-sulfuric acid.<sup>3</sup> The red suspension was evaporated to dryness at room temperature to avoid degradation of the substrate and left to stand for 3 hours after which the brownish solid was filtered over a pad of silica with DCM and concentrated *in vacuo*. The residue was which was recrystallized in hexane to yield to give 3.25g of 4,4'-dibromo-7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (65%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 7.26 (d, *J* = 8.6 Hz, 2H ), 6.52 (d, *J* = 8.6 Hz, 2H), 3.52 (s, 6H), 3.14-2.84 (m,42H), 2.40-2.26 (m, 2H), 2.23-2.07 (m, 2H).

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 155.6, 144.8, 138.0, 130.3, 110.8, 110.5, 61.9, 55.4, 55.4, 37.9, 33.2.

S5: 7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]



To a solution of crude 4,4'-dibromo-7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (7.5 g, 17.2 mmol, 1 equiv) in THF (170 ml, 0.1 M) cooled to -78 °C was added n-BuLi (1.6 M in hexanes, 45 ml, 68.8 mmol, 4 equiv) and stirred for 1 h. The reaction mixture was then quenched with 10 ml of ethanol and returned to r.t and most of the THF was removed under vacuum. The remaining solution was diluted in DCM and washed with water and dried over  $Na_2SO_4$ . The thus obtained 4.6g of 7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (96%) proved to be >95% pure by 1H-NMR and was used as such in the next, if needed it can be recrystallized in hexanes.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.14 (t, J = 7.7 Hz, 2H), 6.87 (dd, J = 7.7 Hz, 2H), 6.63 (d, J = 8.1 Hz, 2H), 3.54 (s, 6H), 3.13-2.92 (m, 4H), 2.43-2.28 (m, 2H), 2.25-2.08 (m, 2H).

 $^{13}\text{C}$  NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  156.4, 145.3, 136.8, 127.5, 116.7, 108.5, 59.1, 55.1, 55.1, 38.7, 31.5.

<sup>&</sup>lt;sup>3</sup>M. A. Zolfigol, *Tetrahedron*, **2001**, *57*, 9509-9511

#### 3: Spinol



To a solution of 7,7'-dimethoxy-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (6.43 g, 23.0 mmol, 1 equiv) in DCM (115 ml, 0.2 M) cooled to -78 °C, is added slowly BBR<sub>3</sub> (neat, 5.0 ml, 52 mmol, 2.3 equiv)and the reaction mixture is slowly returned to room temperature overnight. The reaction mixture is then diluted with DCM and a few milliliters of water carefully added, when the excess of BBR<sub>3</sub> is quenched the mixture is washed with NaHCO<sub>3</sub> and brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuum. The residue is purified by FCC (PE/AcOEt , 9/1) and if needed recrystallized from hexanes to give 4.9 g clean spinol (84%).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 7.18 (t, *J* = 7.7 Hz, 2H), 6.90 (dd, *J* = 7.4, 1.0 Hz, 2H), 6.68 (d, *J* = 8.1 Hz, 2H), 4.59 (brs, 2H), 3.34-2.89 (m, 4H), 2.43-2.26 (m, 2H), 2.26-2.12 (m, 2H).

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 153.0, 146.0, 130.6, 130.1, 117.9, 114.5, 57.6, 37.6, 31.4.

#### 3': S/R-spinol



To a solution of racemic spinol in toluene is added N-Benzylcinchonidinium chloride. The suspension is heated to reflux for 1.5 h and then returned to room temperature. The white solid is filtered on a sintered funnel to afford the S-spinol/ N-Benzylcinchonidinium chloride complex and the filtrate evaporated to afford R-spinol.

The complex is suspended in AcOEt and HCl 1M is added till the pH reaches 3 (stable over 5 minutes, going lower than pH 2 will cause degradation). The organic layer is separated, washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuum. The residue is filtered on a pad of silica (AcOEt) to remove any trace salts remaining, concentrated and recrystallized from hexanes to give pure (S)-(-)-spinol (78% yield, >99% ee).

The white solid obtained from the filtrate is filtered on a pad of silica (AcOEt) to remove any trace salts remaining, concentrated and recrystallized from hexanes to give pure (R)-(+)-spinol (68% yield, >99% ee).

## 3. Synthesis of Spinol based phosphoric acids

The following spinol based phosphoric acids and intermediates leading to these were synthesized according to the procedures reported by List et all.<sup>4</sup>

## SPA 1: (S)-12-hydroxy-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide



To a solution of (S)-spinol (50 mg, 0.20 mmol, 1 equiv) in pyridine (1.3 ml, 0.15 M) was added  $POCl_3$  (56 µl, 0.6 mmol, 3 equiv). The mixture was then stirred for 6 hours before dioxane/water was added

<sup>&</sup>lt;sup>4</sup> Müller, S. (2012). The Catalytic Asymmetric Fischer Indolization and Beyond. Thesis, Universitätsverlag, Köln.

(4/1 V:V 1 ml) and the mixture heated to 100°C for 3 hours. The mixture was then returned to r,t, diluted with AcOEt, washed twice with 5 M HCl, brine, dried over  $Na_2SO_4$  and concentrated under vacuum. The residue was purified by FCC (DCM/MeOH, 0-5%) to give 12 mg clean (S)-12-hydroxy-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide (20%)

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 7.16 (dt, *J* = 14.8, 7.4 Hz, 4H), 7.04 (d, *J* = 7.7 Hz, 2H), 3.21-2.99 (m, 2H), 2.83 (dd, *J* = 16.0, 7.7 Hz, 2H), 2.27 (dd, *J* = 12.0, 6.3 Hz, 2H), 2.14-1.94 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  146.5, 145.5, 139.3, 128.7, 122.9, 121.5, 59.3, 38.3, 30.6.

<sup>31</sup>P (162MHz, CDCl<sub>3</sub>) δ -11.25.

#### General scheme for the synthesis of phosphoric acids SPA 2-4



**Scheme 1: Synthetic route towards SPA 2-4.** Reaction conditions: a) NaH, THF then MOMCl r.t 85%. b) "BuLi, TMEDA, TBME, then  $I_2$  r.t 70%, c) for **S10a** and **S10b** ArB(OH)<sub>2</sub>, Pd(PPh<sub>3</sub>)<sub>4</sub>, K<sub>2</sub>CO<sub>3</sub>, THF, MeOH, H<sub>2</sub>O reflux; for **S10c** ArB(OH)<sub>2</sub>, Pd(PPh<sub>3</sub>)<sub>4</sub>, K<sub>3</sub>PO<sub>4</sub>, DME, reflux. d) HCl, dioxane, reflux. e) POCl<sub>3</sub>, pyridine, reflux then dioxane, H<sub>2</sub>O reflux or Na<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, reflux

#### S8: (R)-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]



A solution of R-spinol (970 g, 3.8 mmol, 1 equiv) in THF (5ml) is slowly added to a suspension of NaH (60% in mineral oil, 828 mg, 19 mmol, 5 equiv) in THF (8ml) and the resulting mixture stirred for 3 h. MOMCI (0.72 ml, 9.5 mmol, 2.5 equiv) in THF (10ml) is then added at 0°C and the reaction stirred at r.t overnight. The reaction mixture is then diluted with AcOEt and the excess NaH quenched with a little water, washed with NH<sub>4</sub>Cl, brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue is purified by FCC (PE/AcOET, 95/5) to give 1.1 g clean 7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (85%).

<sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  7.08 (t, *J* = 7.8 Hz, 2H), 6.89 (d, *J* = 7.5, 1 Hz, 2H), 6.74 (d, *J* = 8.1 Hz, 2H), 4.88 (d, *J* = 6.4 Hz, 2H), 4.82 (d, *J* = 6.4 Hz, 2H), 3.20-2.94 (m, 10H), 2.56-2.40 (m, 2H), 2.27-2.14 (m, 2H).

<sup>13</sup>C NMR (**75** MHz, CDCl<sub>3</sub>): δ 153.5, 145.7, 137.6, 127.6, 117.7, 111.3, 93.4, 59.5, 55.5, 39.2, 31.8

#### S9: (R)-6,6'-diiodo-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]



To a solution of (R)-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (1.1 g, 3.23 mmol, 1 equiv) and TMEDA (1.46 ml, 9.96 mmol, 3 equiv) in THF (32 ml, 0.1 M) cooled to -78 °C is added n-BuLi (1.4 M, 9 ml, 12.94 mmol, 4 equiv). The reaction mixture is then stirred 6 h at r.t before being cooled to -78 °C again.  $I_2$  (3.28 g, 12.94 mmol, 4 equiv) in THF (20ml) is added and the reaction mixture stirred overnight at r.t. The reaction mixture is then diluted with DCM and washed with NaHSO<sub>3</sub>, water and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue is then purified by FCC (PE/DCM, 90/10-70/30) to give 6,6'-diiodo-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (70%).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 7.62 (d, J = 8.0 Hz, 2 H), 6.78 (d, J = 8.0 Hz, 2H), 4.85 (d, J = 5.1 Hz, 2H), 4.63 (d, J = 5.1 Hz, 2H), 3.07-2.87 (m, 10 H), 2.58-2.36 (m, 2 H), 2.25-2.09 (m, 2 H).

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 154.2, 146.8, 143.5, 138.8, 122.6, 99.3, 89.0, 61.1, 57.0, 39.4, 31.0.

#### S10a: (R)-6,6'-diphenyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol



A solution of (R)-6,6'-diiodo-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (200 mg, 0.33 mmol, 1 equiv) and phenyl boronic acid (165 mg, 1.35 mmol, 4 equiv) in THF/MeOH (25:1 V/V, 6.6 ml, 0.05 M) was degassed once. Then K<sub>2</sub>CO<sub>3</sub> (270 mg, 1.98 mmol, 6 equiv) in water (1ml) and Pd(PPh<sub>3</sub>)<sub>4</sub> (52 mg, 0.05 mmol, 15%) was added and the mixture degassed twice more. The reaction mixture was then heated to reflux for 24 hours before being cooled to r.t, diluted with DCM and washed with water, brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was dissolved in dioxane (3 ml, 1M) and HCl (37%, 10% V/V) was added. The mixture was stirred under vigorous stirring at 80 °C for 2 h before being diluted with DCM, washed with NaHCO<sub>3</sub>, brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by FCC (PE/Et<sub>2</sub>O, 95/5) to give 78 mg of clean (R)-6,6'-diphenyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (59% two steps).

<sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  7.48 (d, *J* = 7.3 Hz, 4H), 7.41 (t, *J* = 7.5 Hz, 4H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 2H), 6.95 (d, *J* = 7.6 Hz, 2H), 5.07 (s, 2H), 3.22-2.97 (m, 4H), 2.54-2.28 (m, 4H).

<sup>13</sup>**C NMR (75 MHz, CDCl<sub>3</sub>):** δ 149.6, 145.4, 137.6, 132.2, 130.7, 129.4, 128.7, 127.3, 127.1, 117.5, 58.6, 38.00, 31.3.

SPA 2: (R)-12-hydroxy-1,10-diphenyl-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide



To a solution of (R)-6,6'-diphenyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (60 mg, 0.15 mmol, 1 equiv) in pyridine (0.5 ml, 0.3 M) was added POCl<sub>3</sub> (41 $\mu$ l, 0.45 mmol, 3 equiv) and the mixture was heated to 80°C for 24 h. After this the mixture was cooled to r.t and water (0.3 ml) was added and the mixture heated to 80°C for another 4 h. After cooling to r.t the mixture was acidified to pH 1 (HCl 5M), diluted with DCM and washed with water and brine and concentrated under

vaccum. The residue was purified by FCC (DCM/MeOH 0-5%) before being dissolved in DCM and washed twice with HCl (4M) then water before being concentrated under vacuum and coevaporated with toluene. This gave 40 mg of (R)-12-hydroxy-1,10-diphenyl-4,5,6,7tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide (59%)

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>OD):**  $\delta$  7.46- 7.36 (m, 4H), 7.19 (ddd, *J* = 10.1, 5.9, 2.1 Hz, 6H), 7.16- 7.05 (m, 4H), 3.03 (ddd, *J* = 17.2, 11.4, 6.7 Hz, 2H), 2.87-2.73 (m, 2H), 2.25 (dd, *J* = 12.0, 6.5 Hz, 2H), 2.11 (dd, *J* = 11.5, 8.6 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>OD): δ 151.9, 148.9, 147.2, 144.7, 141.1, 136.8, 136.0, 134.39, 133.2, 129.1, 66.5, 45.2, 36.8.

<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>OD): δ -10.80.

S10b: (R)-6,6'-bis(3,5-bis(trifluoromethyl)phenyl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol



A solution of 6,6'-diiodo-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (200 mg, 0.33 mmol, 1 equiv) and 3,5-Bis(trifluoromethyl)phenylboronic acid (350 mg, 1.35 mmol, 4 equiv) in THF/MeOH (25:1 V/V, 6.6 ml, 0.05 M) was degassed once. Then K<sub>2</sub>CO<sub>3</sub> (270 mg, 1.98 mmol, 6 equiv) in water (1ml) and Pd(PPh<sub>3</sub>)<sub>4</sub> (52 mg, 0.05 mmol, 15%) was added and the mixture degassed twice more. The reaction mixture was then heated to reflux for 24 hours before being cooled to r.t, diluted with DCM and washed with water, brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was dissolved in dioxane (3 ml, 1M) and HCl (37%, 10% V/V) was added. The mixture was stirred under vigorous stirring at 80 °C for 2 h before being diluted with DCM, washed with NaHCO<sub>3</sub>, brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by FCC (PE/Et<sub>2</sub>O, 95/5) to give 98 mg of clean (R)-6,6'-bis(3,5-bis(trifluoromethyl)phenyl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (44% two steps).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 7.98 (d, *J* = 1.6 Hz, 4H), 7.88-7.67 (m, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.05 (d, *J* = 7.7 Hz, 2H), 4.93 (s, 2H), 3.15 (dt, *J* = 8.5, 4.7 Hz, 4H), 2.47 (ddd, *J* = 13.1, 6.6, 2.5 Hz, 2H), 2.37 (ddd, *J* = 13.1, 10.4, 8.9 Hz, 2H).

<sup>13</sup>**C NMR (75 MHz, CDCl<sub>3</sub>):** δ 150.0, 147.2, 139.8, 131.8, 131.6 (q, *J* = 33.1 Hz), 130.8, 129.6 (d, *J* = 3.4 Hz), 124.8, 123.5 (q, *J* = 272.6 Hz). 120.9 (quint, *J* = 3.1 Hz), 118.7, 58.1, 37.8, 31.3.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.88.

## SPA 3: (R)-1,10-bis(3,5-bis(trifluoromethyl)phenyl)-12-hydroxy-4,5,6,7-tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide



To a solution of (R)-6,6'-bis(3,5-bis(trifluoromethyl)phenyl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (98 mg, 0.145 mmol, 1 equiv) in pyridine (0.5 ml, 0.3 M) was added POCl<sub>3</sub> (40µl, 0.44 mmol, 3 equiv) and the mixture was stirred for 24 h. A second dose of POCl<sub>3</sub> (40µl, 0.44 mmol, 3 equiv) was added and the mixture stirred till full consumption of the starting material. After this water (0.3 ml) was added very carefully (strong exothermic reaction) and the mixture was diluted with DCM and acidified to pH 1 (HCl 5M), washed with water and brine and concentrated under vaccum. The residue was dissolved in THF (10 ml) and 1 ml of saturated Na<sub>2</sub>CO<sub>3</sub> was added. The mixture was heated to 70 °C till full consumption of the intermediate (18h) before being returned to r.t, diluted with DCM and washed twice with HCl (4M), brine and concentrated under vaccum. The residue was purified by FCC (Toluene/DCM 0-100%) before being dissolved in DCM and washed twice with HCl (4M) then water before being concentrated under vacuum and co-evaporated with toluene. This 96.6 of (R)-1,10-bis(3,5-bis(trifluoromethyl)phenyl)-12-hydroxy-4,5,6,7gave mg tetrahydrodiindeno[7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide (90%)

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 7.73-7.65 (m, 4H), 7.46 (s, 2H), 7.26 (dd, *J* = 7.6, 1.3 Hz, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 3.24-3.10 (m, 2H), 2.99 (dd, *J* = 16.3, 7.8 Hz, 2H), 2.37 (dd, *J* = 12.1, 6.4 Hz, 2H), 2.29-2.16 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ 147.2 (d, *J* = 2.3 Hz), 141.6 (d, *J* = 7.9 Hz), 140.6 (d, *J* = 3.5 Hz), 139.5, 132.2 (d, *J* = 3.8 Hz), 131.2 (q, *J* = 33.1 Hz), 130.7, 129.5, 123.3 (q, *J* = 272.7 Hz), 123.2, 120.6 (quint, *J* = 3.6 Hz), 59.9, 38.5, 30.5.

<sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ -10.60

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.76.

S10c': (1R,6r,6's)-6,6'-di(anthracen-9-yl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'diol



A solution of 6,6'-diiodo-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (300 mg, 0.51 mmol, 1 equiv) and 9-anthracyl boronic acid (457 mg, 2.03 mmol, 4 equiv) and  $K_3PO_4$  (861 mg, 4.06 mmol, 8 equiv) in DME (5.0 ml, 0.1 M) was degassed once via *freeze-pump-thaw*. Pd(PPh<sub>3</sub>)<sub>4</sub> (54 mg, 0.051 mmol, 0.1 equiv) was added and the mixture degassed via the same method twice more. The reaction mixture was then heated to 85 °C for 48 hours before being cooled to r.t, diluted with DCM and then washed with water, brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by FCC (Hexane/Toluene/iPrOH 94/5/1) to give 196 mg clean (1R,6r,6's)-6,6'-di(anthracen-9-yl)-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (55% yield).

<sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  8.49 (s, 2H), 8.10-8.02 (d, *J* = 7.5 Hz, 2H), 7.98 (t, *J* = 8.4 Hz, 4H), 7.61 (dd, *J* = 8.9, 1.1 Hz, 2H), 7.45 (dddd, *J* = 18.0, 8.0, 6.5, 1.4 Hz, 4H), 7.23-7.09 (m, 4H), 7.05 (d, *J* = 7.5 Hz, 2H), 6.21 (ddd, *J* = 8.8, 6.5, 1.2 Hz, 2H), 4.39 (d, *J* = 5.8 Hz, 2H), 3.84 (d, *J* = 5.8 Hz, 2H), 3.28 (ddd, *J* = 15.8, 10.7, 7.9 Hz, 2H), 3.20 -3.04 (m, 2H), 2.65 (td, *J* = 11.6, 11.1, 9.0 Hz, 2H), 2.52 (s, 8H).

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 154.1, 145.5, 141.8, 134.5, 132.6, 131.6, 131.31, 130.7, 130.2, 128.7, 128.6, 127.8, 127.5, 127.0, 126.8, 126.1, 125.7, 125.5, 125.1, 119.9, 98.6, 60.1, 56.3, 39.0, 31.4.

#### S10c : (1R,6r,6's)-6,6'-di(anthracen-9-yl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'diol



A solution of (1R,6r,6's)-6,6'-di(anthracen-9-yl)-7,7'-bis(methoxymethoxy)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (196 mg, 0.28 mmol, 1 equiv) was dissolved in dioxane (3 ml, 0.1 M) and HCl (37%, 10% V/V) was added. The mixture was stirred under vigorous stirring at 80 °C for 2 h. The mixture was then cooled to room temperature, diluted with DCM, washed with NaHCO<sub>3</sub>, brine, dried over

 $Na_2SO_4$  and concentrated under vacuum. The residue was purified by FCC (dry loaded on silica, PE/AcOEt, 7/3) to give 71 mg of clean (S)-6,6'-di(anthracen-9-yl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (41%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 8.51 (s, 2H), 8.12-8.03 (m, 2H), 8.00 (d, *J* = 8.5 Hz, 2H), 7.81 (dd, *J* = 8.7, 1.2 Hz, 2H), 7.48 (ddd, *J* = 8.3, 6.5, 1.3 Hz, 2H), 7.41 (ddd, *J* = 8.1, 6.6, 1.4 Hz, 2H), 7.33 (dd, *J* = 8.9, 1.1 Hz, 2H), 7.30-7.24 (m, 2H), 7.08 (d, *J* = 7.5 Hz, 2H), 7.00 (d, *J* = 7.5 Hz, 2H), 6.48 (ddd, *J* = 8.8, 6.5, 1.2 Hz, 2H), 4.59 (s, 2H), 3.33-3.20 (m, 2H), 3.15 (ddd, *J* = 16.0, 8.5, 2.3 Hz, 2H), 2.67-2.49 (m, 4H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 150.7, 145.7, 133.3, 131.6, 131.5, 131.4, 131.0, 130.9, 130.7, 128.6, 128.1, 127.3, 126.5, 126.1, 125.8, 125.4, 125.2, 122.6, 116.9, 58.8, 38.3, 31.6.

## SPA 4: (1r,5aR,10s,12S)-1,10-di(anthracen-9-yl)-12-hydroxy-4,5,6,7-tetrahydrodiindeno [7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide



To a solution of 6,6'-di(anthracen-9-yl)-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-7,7'-diol (71 mg, 0.12 mmol, 1 equiv) in pyridine (1.17 ml, 0.1 M) was added at 0°C POCl<sub>3</sub> (55µl, 0.59 mmol, 5 equiv) and the mixture was stirred at 80°C for 24 h after which a precipitate had formed. The reaction was returned to r.t and dioxane (2 ml) was added followed by water (0.6 ml). The reaction was then heated to 100°C for 48 h after which the precipitate had dissolved. The reaction mixture is then returned to r.t, diluted with DCM and washed with HCl (4M) and water before being concentrated under vacuum. The residue was purified by FCC (DCM, Acetone, AcOH 90/9/1) before being dissolved in DCM and washed twice with HCl (4M) then water before being concentrated under vacuum and co-evaporated with toluene. After 48h of drying under high vacuum 70 mg of(1r,5aR,10s,12S)-1,10-di(anthracen-9-yl)-12-hydroxy-4,5,6,7-tetrahydrodiindeno [7,1-de:1',7'-fg][1,3,2]dioxaphosphocine 12-oxide (89%) was obtained.

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>):** δ 7.87 (s, 2H), 7.84-7.69 (m, 4H), 7.70-7.58 (m, 2H), 7.38-7.26 (m, 6H), 7.28-7.17 (m, 4H), 7.13 (t, J = 7.7 Hz, 2H), 7.00 (t, J = 7.5 Hz, 2H), 3.45-3.23 (m, 2H), 3.23-2.86 (m, 2H), 2.57 (dd, J = 12.0, 6.3 Hz, 2H), 2.52-2.30 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 146.0, 146.0, 144.1, 144.0, 140.3, 140.3, 133.3, 132.1, 131.3, 130.7, 130.6, 130.2, 130.2, 129.6, 128.5, 128.0, 128.0, 127.3, 126.4, 125.8, 124.6, 124.6, 122.3, 60.2, 38.9, 30.4. (Extra signals due to <sup>31</sup>P couplings depending on apodisation factor)

<sup>31</sup>P (121 MHz, CDCl<sub>3</sub>) δ -11.77.

### 4. General procedures for ELLE experiments.

#### GP 1) General procedure for biphasic batch extraction experiments

All extraction experiments were conducted in 2 ml auto-sampler vials with crimp cap seals equipped with stirrbars. In a standard experiment, a solution of the racemic guest (0.4ml, indicated concentration) dissolved in a phosphate buffer solution (buffer strength 0.1 M, indicated pH) was carefully added to a solution of the corresponding host in the indicated solvent (0.4 ml, 1.0 mM). The two-phasic system was then cooled to the indicated temperature and stirred at 900 rpm for 16 hours. The phases were then allowed to separate over a period of 2 minutes. The aqueous phase was removed and an aliquot injected into a reverse phase HPLC for determination of the ee, distribution and  $\alpha_{op}$ . All extraction experiments were carried out *in triplo* and with a simultaneous blank reaction (concentration of host = 0.0 mM).

#### GP 2) General procedure for the U-tube reactor experiments

To a U-shaped reactor vessel (Figure 7a, inner diameter = 1.0 cm) equipped with a stirrbar, was added a solution of SPA 4 in chloroform (10 ml, 0.5 mM). The vessal the solution was cooled to 6°C and both the feeding phase (5 ml of a 2 or 20.0 mM solution of racemic phenylglycinol dissolved in a phosphate buffer solution (buffer strength 0.1 M) pH= 5.0) and the receiving phase (5ml of a HCl solution in doubly distilled water such as pH = 2.0) were added simultaneously to respectfully the right and left legs of the U-tube. Stirring was set to 900 rpm and aliquots of 0.2 ml were removed from the receiving phase at given intervals. Each aliquot was replaced by an equal amount of fresh receiving phase.

#### GP 3) General procedure for the triphasic reactor system experiments

To a tube-shaped reactor vessel, as described in Figure 7b (inner diameter = 0.9 cm), equipped with a stirrbar and overhead stirrer, was added the first host phase comprised of a solution of SPA 4 in chloroform (3 ml, 1.0 mM). The vessal was cooled to 6°C and then was carefully added so as no mixing of phases could be observed in the following order, the feeding phase (5 ml of a 2.0 mM solution of racemic phenylglycinol dissolved in a phosphate buffer solution (buffer strength 0.1 M) pH= 5.0) and the second host phase comprised of a solution of SPA 4 in toluene (3 ml, 1.0 mM). Stirring was set at a rate of 900 rpm so as all three phases were stirred but no mixing occurred and was left for 16 hours. The organic phases were removed from the reactor and each independently extracted with a 3 ml of a solution of HCl in doubly distilled water pH = 2.0. The extracted aqueous phases were sampled for measuring in reverse phase HPLC.

## 5. Enantioselectivities, distributions and $\alpha_{op}$ for all experiments

#### **Guest Screening for SPA 1-4**

All extractions on guests **5-19** were run according to GP 1 and with the following parameters: guest solution concentration set to 2 mM, host solution solvent being chloroform, vessel temperature set to 6 °C, buffer pH set to 5.0.



| C        |     | SPA   | 2     |               |     | SPA   | 3     |                      | SPA 4 |        |        |               |
|----------|-----|-------|-------|---------------|-----|-------|-------|----------------------|-------|--------|--------|---------------|
| Compound | ee% | Ds    | Dr    | $\alpha_{op}$ | ee% | Ds    | Dr    | $\alpha_{\text{op}}$ | ee%   | Ds     | Dr     | $\alpha_{op}$ |
| 5        |     |       |       |               |     |       |       |                      |       |        |        |               |
| 6        | 2   |       |       |               | 2   |       |       |                      |       |        |        |               |
| 7        | 6   |       |       |               | 7   |       |       |                      |       |        |        |               |
| 8        |     |       |       |               |     |       |       |                      |       |        |        |               |
| 9        |     |       |       |               | 2   |       |       |                      |       |        |        |               |
| 10       | 18  | 1.276 | 3.414 | 2.7           | 5   |       |       |                      |       |        |        |               |
| 11       | 40  | 0.452 | 2.315 | 5.1           | 33  | 1.276 | 3.414 | 2.7                  | 37    | 0.0284 | 0.9889 | 34.8          |
| 12       |     |       |       |               |     |       |       |                      |       |        |        |               |
| 13       | 1   |       |       |               | 1   |       |       |                      |       |        |        |               |
| 14       | 3   |       |       |               | 1   |       |       |                      |       |        |        |               |
| 15       | 10  |       |       |               | 7   |       |       |                      |       |        |        |               |
| 16       |     |       |       |               |     |       |       |                      |       |        |        |               |
| 17       |     |       |       |               |     |       |       |                      |       |        |        |               |
| 18       |     |       |       |               |     |       |       |                      |       |        |        |               |
| 19       |     |       |       |               |     |       |       |                      |       |        |        |               |

#### **Temperature Screening on 11 with SPA 2,4**

All extractions were run on guest **11** according to GP 1 and with the following parameters: guest solution concentration set to 2 mM, host solution solvent being chloroform, vessel temperature set to as indicated, buffer pH set to 5.0.

For SPA 2

| T°    | ee% (aq) | Ds    | D <sub>R</sub> | α <sub>op</sub> |
|-------|----------|-------|----------------|-----------------|
| 2°C   | 48       | 0.139 | 2.123          | 15.273          |
| 6 °C  | 40       | 0.452 | 2.315          | 5.122           |
| 10 °C | 40       | 0.490 | 2.154          | 4.396           |
| 18°C  | 40       | 0.399 | 1.932          | 4.842           |
| 40 °C | 33       | 0.544 | 1.928          | 3.544           |

For SPA 4

| T°    | ee% (aq) | Ds     | D <sub>R</sub> | αορ    |
|-------|----------|--------|----------------|--------|
| 2°C   | 28       | 0.376  | 1.624          | 4.315  |
| 6 °C  | 37       | 0.0284 | 0.9889         | 34.820 |
| 10°C  | 20       | 0.259  | 1.048          | 4.041  |
| 18°C  | 20       | 0.282  | 1.097          | 3.884  |
| 40 °C | 19       | 0.379  | 1.383          | 3.649  |







#### Guest to Host Screening on 11 with SPA 2,4

All extractions were run on guest **11** according to GP 1 and with the following parameters: guest solution concentration set as indicated, host solution solvent being chloroform, vessel temperature set to 6 °C, buffer pH set to 5.0. When values become extreme they are marked n.a as unreliable. For use in the graphs they were arbitrarily set to: ee% = 0, Ds/Dr = 50,  $\alpha_{op}$  = 1

| Ratio guest/SPA 2 | guest mmol | host mmol | ee% | Ds     | Dr     | α <sub>op</sub> |
|-------------------|------------|-----------|-----|--------|--------|-----------------|
| 0.25              | 0.25       | 1         | 0   | n.a    | n.a    | n.a             |
| 0.5               | 0.5        | 1         | 5   | 10.041 | 31.776 | 3.165           |
| 1                 | 1          | 1         | 40  | 3.075  | 12.265 | 3.989           |
| 1.5               | 1.5        | 1         | 38  | 1.385  | 6.46   | 4.664           |
| 2                 | 2          | 1         | 50  | 0.452  | 2.315  | 5.122           |
| 3                 | 3          | 1         | 27  | 0.643  | 1.398  | 2.174           |

| Ratio guest/SPA 4 | guest mmol | host mmol | ee% | Ds     | Dr     | αορ    |
|-------------------|------------|-----------|-----|--------|--------|--------|
| 0.25              | 0.25       | 1         | 0   | n.a    | n.a    | n.a    |
| 0.5               | 0.5        | 1         | 7   | 3.030  | 2.927  | 1.035  |
| 1                 | 1          | 1         | 40  | 0.788  | 3.592  | 4.555  |
| 1.5               | 1.5        | 1         | 38  | 0.572  | 2.733  | 4.777  |
| 2                 | 2          | 1         | 37  | 0.0284 | 0.9889 | 34.820 |
| 3                 | 3          | 1         | 14  | 0.146  | 0.674  | 4.615  |







pH Screening on 11 with SPA 2,4

All extractions were run on guest **11** according to GP 1 and with the following parameters: guest solution concentration 2 mM, host solution solvent being chloroform, vessel temperature set to 6 °C, buffer pH set as indicated. When values become extreme they are marked n.a as unreliable. For use in the graphs they were they were arbitrarily set to: ee% = 0, Ds/Dr = 0,  $\alpha_{op} = 1$ 

| рН   | ee% (aq) | D <sub>R</sub> | Ds     | α <sub>op</sub> |
|------|----------|----------------|--------|-----------------|
| 2    | 0        | n.a            | n.a    | 1               |
| 3    | 7        | 0.124          | 0.038  | 3.263           |
| 3.7  | 21       | 0.651          | 0.163  | 3.994           |
| 4.5  | 23       | 0.817          | 0.2    | 4.085           |
| 5    | 40       | 2.315          | 0.452  | 5.122           |
| 5.5  | 27       | 0.987          | 0.245  | 4.029           |
| 6.5  | 33       | 1.046          | 0.275  | 3.804           |
| 7.5  | 17       | 1.932          | 1.237  | 1.562           |
| 8.4  | 39       | 133.574        | 61.328 | 2.178           |
| 9.6  | 44       | 83.834         | 27.162 | 3.086           |
| 10.6 | 31       | 22.779         | 12.6   | 1.808           |
| 11.1 | 17       | 13.219         | 9.926  | 1.332           |
| 12   | 5        | 10.424         | 10.153 | 1.027           |

For SPA 2

#### For SPA 4

| рН  | ee% (aq) | D <sub>R</sub> | Ds    | αορ   |
|-----|----------|----------------|-------|-------|
| 2   | 0        | n.a            | n.a   | 1     |
| 3   | 19       | 0.51           | 0.107 | 4.766 |
| 3.7 | 25       | 1.123          | 0.798 | 1.407 |

| 4.5  | 27 | 1.002   | 0.221  | 4.534  |
|------|----|---------|--------|--------|
| 5    | 37 | 0.9889  | 0.0284 | 34.820 |
| 5.5  | 31 | 1.117   | 0.252  | 4.433  |
| 6.5  | 28 | 1.031   | 0.233  | 4.425  |
| 7.5  | 19 | 0.428   | 0.032  | 13.375 |
| 8.4  | 52 | 187.367 | 63.332 | 2.958  |
| 9.6  | 37 | 62.139  | 30.293 | 2.051  |
| 10.6 | 27 | 22.072  | 13.455 | 1.640  |
| 11.1 | 15 | 12.161  | 9.444  | 1.288  |
| 12   | 3  | 9.084   | 9.069  | 1.002  |

When run without buffer:

| Initial Solution pH | ee% (aq) | D <sub>R</sub> | Ds    | αορ   |
|---------------------|----------|----------------|-------|-------|
| 9                   | 37       | 1.812          | 0.322 | 5.620 |









#### Solvent Screening on 11 with SPA 2,4

All extractions were run on guest **11** according to GP 1 and with the following parameters: guest solution concentration 2 mM, host solution solvent as indicated, vessel temperature set to 6 °C, buffer pH set to 5.0. For SPA 4 in chlorobenzene distributions are expressed as  $*10^{2}$ 

#### For SPA 2

| Solvent            | ee% (aq) | Ds    | D <sub>R</sub> | $\alpha_{op}$ |
|--------------------|----------|-------|----------------|---------------|
| Tetrochloromethane | 12       | 0.156 | 0.601          | 3.853         |
| Chloroform         | 40       | 0.452 | 2.315          | 5.122         |
| DCM                | 9        | 0.31  | 0.797          | 2.571         |
| Toluene            | -8       | 0.601 | 0.156          | 3.853         |
| α-Trichlorotoluene | 5        | 0.094 | 0.315          | 3.351         |
| DCE                | 9        | 0.287 | 0.727          | 2.533         |

#### For SPA 4

| Solvent            | ee% (aq) | Ds     | D <sub>R</sub> | α <sub>op</sub> |
|--------------------|----------|--------|----------------|-----------------|
| Tetrochloromethane | 21       | 0.168  | 0.859          | 5.113           |
| Chloroform         | 37       | 0.0284 | 0.9889         | 34.820          |
| DCM                | 19       | 0.307  | 1.081          | 3.521           |
| Chlorobenzene      | 25       | 180.4  | 274.8          | 1.523           |
| Toluene            | -39      | 1.538  | 0.044          | 34.955          |
| α-Trichlorotoluene | 20       | 0.239  | 0.957          | 4.004           |
| DCE                | 15       | 0.2    | 0.763          | 3.815           |











#### Amino-Alcohol Screening with SPA 2,4

All extractions were run on the corresponding guest according to GP 1 and with the following parameters: guest solution concentration 2 mM, host solution solvent as chloroform, vessel temperature set to 6 °C, buffer pH set to 5.0.



| Compound | ee%   | (aq)  | Ds    |       | D <sub>R</sub> |       | $\alpha_{op}$ |       |
|----------|-------|-------|-------|-------|----------------|-------|---------------|-------|
| compound | SPA 2 | SPA 4 | SPA 2 | SPA 4 | SPA 2          | SPA 4 | SPA 2         | SPA 4 |
| 10       | 18    | rac   | 1.276 | n.a   | 3.414          | n.a   | 2.7           | n.a   |
| 20       | rac   | rac   | n.a   | n.a   | n.a            | n.a   | n.a           | n.a   |
| 21       | rac   | rac   | n.a   | n.a   | n.a            | n.a   | n.a           | n.a   |
| 22       | rac   | rac   | n.a   | n.a   | n.a            | n.a   | n.a           | n.a   |
| 23       | 8     | 11    | 0.400 | 0.419 | 0.345          | 0.276 | 1.2           | 1.5   |
| 24       | 20    | 9     | 0.377 | 0.438 | 1.163          | 0.854 | 3.1           | 2.0   |
| 25       | 1     | 6     | 0.394 | 0.315 | 0.423          | 0.389 | 1.1           | 1.2   |
| 26       | n.a   | n.a   | n.a   | n.a   | n.a            | n.a   | n.a           | n.a   |
| 27       | 7     | 8     | 0.346 | 0.345 | 0.969          | 0.726 | 2.8           | 2.1   |
| 28       | 57    | 60    | 0.346 | 0.365 | 1.13           | 1.014 | 3.3           | 2.8   |

#### pH Screening on 28 with SPA 2,4

All extractions were run on guest **28** according to GP 1 and with the following parameters: guest solution concentration 2 mM, host solution solvent being chloroform, vessel temperature set to 6 °C, buffer pH set as indicated.

#### For SPA 2

| рН   | ee% (aq) | D <sub>R</sub> | Ds    | α <sub>op</sub> |
|------|----------|----------------|-------|-----------------|
| 3    | 33       | 1.510          | 0.283 | 5.325           |
| 3.7  | 37       | 1.835          | 0.287 | 6.391           |
| 4.5  | 37       | 1.953          | 0.388 | 5.034           |
| 5    | 57       | 1.130          | 0.346 | 3.266           |
| 5.5  | 43       | 3.116          | 0.617 | 5.053           |
| 6.5  | 45       | 5.413          | 1.442 | 3.754           |
| 7.5  | 40       | 4.156          | 1.134 | 3.666           |
| 8.4  | 47       | 8.279          | 2.429 | 3.409           |
| 9.6  | 37       | 14.988         | 6.306 | 2.377           |
| 10.6 | 23       | 9.396          | 5.577 | 1.685           |

For SPA 4

| рН   | ee% (aq) | D <sub>R</sub> | Ds    | α <sub>op</sub> |
|------|----------|----------------|-------|-----------------|
| 3    | 32       | 1.484          | 0.306 | 4.849           |
| 3.7  | 33       | 1.604          | 0.301 | 5.330           |
| 4.5  | 34       | 1.449          | 0.282 | 5.136           |
| 5    | 60       | 1.014          | 0.365 | 2.778           |
| 5.5  | 37       | 2.340          | 0.539 | 4.346           |
| 6.5  | 47       | 8.192          | 2.529 | 3.239           |
| 7.5  | 37       | 3.064          | 0.878 | 3.490           |
| 8.4  | 50       | 30.092         | 8.428 | 3.571           |
| 9.6  | 40       | 19.695         | 7.822 | 2.518           |
| 10.6 | 16       | 8.026          | 5.551 | 1.446           |









U-tube

U-tube experiments where run on **11** according to GP 2.



With 2 mM feeding phase

| Aliquot | Extraction<br>Time | ee% Receiving<br>Phase |
|---------|--------------------|------------------------|
| 1       | 1 h                | 41                     |
| 2       | 2 h                | 35                     |
| 3       | 3 h                | 29                     |
| 4       | 72 h               | 9                      |

#### With 20 mM feeding phase

| Aliquot | Extraction<br>Time | ee% Receiving<br>Phase |
|---------|--------------------|------------------------|
| 1       | 10 min             | 50                     |
| 2       | 20 min             | 52                     |
| 3       | 1 h                | 52                     |
| 4       | 2 h                | 55                     |
| 5       | 3 h                | 50                     |
| 6       | 4 h                | 47                     |
| 7       | 24 h               | 29                     |

#### **Tri-phase reactor**

Tri-phase experiments where run on **11** according to GP 3.



A control back-extraction was run to measure how much 11 could be recovered from the organic phase by acidic wash. This showed that over 98% of **11** present in the organic phase could be recuperated making the observed HPLC values reliable.

## 6. Spectroscopic data

#### SFC traces

Peak2

48.7225

#### **Racemic Spinol.**



854.3828 4.89 min

79.1378

(R)-Spinol



(S)-Spinol



#### **HPLC traces**

Only Key Traces for each compound are shown. Broad peak at approximatively 50 min is the phosphate buffer.

#### 11: Phenylglycinol

#### Racemic phenylgycinol



## <Peak Table>

| PDAC  | n1 190nm  |          |         |        |      |      |      |
|-------|-----------|----------|---------|--------|------|------|------|
| Peak# | Ret. Time | Area     | Height  | Conc.  | Unit | Mark | Name |
| 1     | 5,317     | 9491796  | 543615  | 49,273 |      | Μ    |      |
| 2     | 6,211     | 9771870  | 505205  | 50,727 |      | M    |      |
| Tota  | I         | 19263665 | 1048820 |        |      |      |      |

Triphasic resolution system, (R)-host phase 2

PGL toluene phase (triphasic system)



| PDAC  | n i 190nm |         |        |         |
|-------|-----------|---------|--------|---------|
| Peak# | Ret. Time | Area    | Height | Area%   |
| 1     | 4,306     | 5565733 | 323060 | 74,233  |
| 2     | 5,096     | 1931890 | 97967  | 25,767  |
| Total |           | 7497623 | 421027 | 100,000 |

Triphasic resolution system, (R)-host phase 1



| Peak# | Ret. Time | Area    | Height | Area%   |
|-------|-----------|---------|--------|---------|
| 1     | 4,528     | 2515577 | 148818 | 29,935  |
| 2     | 5,351     | 5887977 | 288990 | 70,065  |
| Total |           | 8403555 | 437808 | 100,000 |

U-tube receiving phase (pH = 1,5)

U-tube PGL SPA4 20 min runtime



<Peak Table>

| PDA C | h1 190nm  |         | -      |         |
|-------|-----------|---------|--------|---------|
| Peak# | Ret. Time | Area    | Height | Area%   |
| 1     | 4,473     | 2023406 | 119879 | 75,127  |
| 2     | 5,285     | 669910  | 34718  | 24,873  |
| Total |           | 2693316 | 154597 | 100,000 |

NMR