The vinylogous Catellani reaction: A combined computational and experimental study

Yoshihiko Yamamoto,* Tsukasa Murayama, Jiyue Jiang, Takeshi Yasui and Masatoshi Shibuya

Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601

yamamoto-yoshi@ps.nagoya-u.ac.jp

Supporting Information

1. General Considerations S2
2. Preparation of Benzylic Alcohol and Sulfonamide S2
3. Preparation of 4-Iodo-2-quinolones S4
4. Vinylogous Catellani Reactions S7
5. Control Experiments S15
6. Single Crystal X-ray Diffraction Study S16
7. DFT Calculations S18
8. NMR Charts S81
1. General considerations

Column chromatography was performed on silica gel (Cica silica gel 60N) with solvents specified below. 1H and 13C NMR spectra were obtained for samples in CDCl$_3$ solutions at 25 °C. 1H NMR chemical shifts are reported in terms of chemical shift (δ, ppm) relative to the singlet at 7.26 ppm for chloroform. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet. Coupling constants are reported in Hz. 13C NMR spectra were fully decoupled and are reported in terms of chemical shift (δ, ppm) relative to the triplet at δ 77.0 ppm for CDCl$_3$. Reagents and dry solvents were purchased and used as received. N-protected (o-aminophenyl)propiolates were reported in our previous paper.1 Benzylalcohols 3a,2 3b,3 3c,4 3d,5 3e,4 3f,6 3g,2 3h,2 3i,2 3j,5 3k,6 3l,6 3m,7 3n,8 3o,9 and benzylamine 7,10 were synthesized according to literature

2. Preparation of benzylalcohols and sulfonamide

Synthesis of benzyl alcohol 3f: To a solution of methyl 2-bromo-4-chlorobenzoate (461.9 mg, 1.85 mmol) in Et$_2$O (10.0 mL) was added MeMgl (3.0 M in Et$_2$O, 2.0 mL, 6.0 mmol) at 0 °C. The reaction mixture was stirred for 12 h at room temperature. The reaction was quenched with sat. NH$_4$Cl (10 mL) at 0 °C and the whole mixture was extracted with AcOEt (3 × 20 mL). The combined organic layer was washed with brine (10 mL) and dried over Mg$_2$SO$_4$. After concentration in vacuo, the crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1) to afford 3f (308.3 mg, 86%) as a colorless oil; 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 7.64 (d, J = 8.8 Hz, 1 H), 7.59 (d, J = 1.6 Hz, 1 H), 7.27 (dd, J = 8.8, 1.6 Hz, 1 H), 2.51 (s, 1 H), 1.73 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 144.8, 134.3, 133.1, 128.1, 127.4, 120.5, 73.3, 29.3; IR (neat) 3410 (O–H) cm$^{-1}$; HRMS (DART) m/z calcd for C$_7$H$_9$BrCl 230.9576, found 230.9573 [M–OH]$^+$.

Similarly, benzylic alcohol 3d was prepared from the corresponding ester.

Analytical data for 3d: 554 mg, 55%; white solid (m.p. 60.1–61.9 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.48 (dd, J = 7.3, 2.3 Hz, 1 H), 7.22–7.13 (m, 2 H), 3.08 (br s, 1 H), 2.45 (s, 3 H), 1.78 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 146.2, 139.8, 129.8, 127.0, 124.9, 123.5, 74.0, 29.7, 24.7; IR (neat) 3423 (O–H) cm⁻¹; HRMS (DART) m/z calced for C₁₀H₁₂Br 211.0122, found 211.0129 [M–OH]⁺.

Synthesis of benzylic alcohol 3m: To a suspension of Zn (653.9 mg, 10.0 mmol) in THF (1 mL) was added dibromoethane (32 µL), and this mixture was heated at 65 °C for 1 min. After cooled to room temperature, Me₂SiCl (40 µL) was added. After stirring for 15 min, a solution of o-bromoacetophenone (266.5 µL, 2.0 mmol) and ethyl bromodifluoroacetate (512.9 µL, 4.0 mmol) in THF (3 mL) was added and the resultant mixture was stirred at room temperature for 3 h. The reaction was quenched with sat. NH₄Cl (10 mL) and the whole mixture was extracted with Et₂O (3 × 10 mL). The combined organic layer was washed with brine (10 mL) and dried over MgSO₄. After concentration in vacuo, the crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to afford 3m (485.5 mg, 75%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.63 (d, J = 8.0 Hz, 1 H), 7.57 (d, J = 7.6 Hz, 1 H), 7.32 (dt, J = 7.6, 0.8 Hz, 1 H), 7.18 (dt, J = 7.6, 1.2 Hz, 1 H), 4.28 (q, J = 7.2 Hz, 2 H), 4.14 (s, 1 H), 1.93, (s, 3 H), 1.27 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 163.2 (t, J = 31.5 Hz), 137.2, 135.7, 130.3, 129.8, 127.2, 120.8, 115.5 (t, J = 261.3 Hz), 77.8 (t, J = 25.3 Hz), 63.1, 23.7, 13.7; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ −112.7 (d, J = 254.2 Hz), −114.1 (d, J = 254.2 Hz); IR (neat) 3521 (O–H), 1761 (C=O) cm⁻¹; HRMS (DART) m/z calced for C₁₂H₁₃BrF₂O₃•NH₄ 340.0356, found 340.0357 [M+NH₄]⁺.

Synthesis of benzylic alcohol 3n: The reported procedure for the synthesis of 3j was applied to 6-methyl-5-hepten-2-one (1.2 mL, 10.0 mmol). The crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 100:1–40:1) to afford 3n (200.6 mg, 7%) as a yellow oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.72 (dd, J = 8.0, 1.6 Hz, 1 H), 7.58 (dd, J = 8.0, 1.2 Hz, 1 H), 7.30 (dt, J = 7.6, 1.2 Hz, 1 H), 7.09 (dt, J = 7.6, 1.6 Hz, 1 H), 5.10 (t, J = 7.0 Hz, 1 H), 2.54 (s, 1 H), 2.52–2.45 (m, 1 H), 1.97–1.80 (m, 3 H), 1.70 (s, 3 H), 1.65 (s, 3 H), 1.47 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 145.3, 134.9, 132.4, 128.4, 128.3, 127.4, 124.0, 120.1, 76.2, 40.4, 28.0, 25.7, 23.1, 17.6; IR (neat) 3458 (O–H) cm⁻¹; HRMS (DART) m/z calced for C₁₄H₁₉BrO•NH₄ 300.0963, found 300.0943 [M+NH₄]⁺.
Synthesis of benzyl alcohol **3o**: To a solution of 8-bromo-3,4-dihydropyridophen-1(2H)-one\(^{11}\) (596.1 mg, 2.64 mmol) in Et\(_2\)O (5 mL) was added MeMgl (3.0 M in Et\(_2\)O, 1.1 mL, 3.17 mmol) at 0 °C. The reaction mixture was stirred for 1.5 h at room temperature. The reaction was quenched with sat. NH\(_4\)Cl (10 mL) at 0 °C and the whole mixture was extracted with Et\(_2\)O (3 × 10 mL). The combined organic layer was washed with brine (10 mL) and dried over MgSO\(_4\). After concentration in vacuo, the crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to afford **3o** (355.5 mg, 56%) as a colorless solid (m.p. 68.0–70.5 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 7.41 (d, \(J\) = 7.6 Hz, 1 H), 7.06 (d, \(J\) = 7.6 Hz, 1 H), 6.97 (t, \(J\) = 7.6 Hz, 1 H), 3.70 (s, 1 H), 2.89 (ddd, \(J\) = 16.0, 10.8, 5.6 Hz, 1 H), 2.81 (dt, \(J\) = 16.0, 4.4 Hz, 1 H), 2.02–1.97 (m, 2 H), 1.94–1.86 (m, 1 H), 1.82–1.71 (m, 1 H), 1.76 (s, 3 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 140.0, 139.6, 132.7, 128.9, 127.7, 121.7, 72.3, 40.3, 31.4, 28.4, 20.0; IR (neat) 3425 (O–H) cm\(^{-1}\); HRMS (DART) \(m/z\) calcd for C\(_{11}\)H\(_{13}\)BrO•NH\(_4\) 258.0494, found 258.0516 [M+NH\(_4\)]\(^+\).

Synthesis of sulfonamide **9**: To a solution of o-bromobenzylamine \(^7\) (214.6 mg, 1.0 mmol) in \(\mathrm{CH}_2\mathrm{Cl}_2\) (3.0 mL) was added triethyamine (140 \(\mu\)l, 0.95 mmol) and \(p\)-toluenesulfonyl chloride (180.3 mg, 1.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 days. The reaction was quenched with 10% HCl (10 mL) and the whole mixture was extracted with \(\mathrm{CH}_2\mathrm{Cl}_2\) (2 × 20 mL). The combined organic layer was washed with brine (10 mL) and dried over Na\(_2\)SO\(_4\). After concentration in vacuo, the crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 4:1) to afford tosylamide **9** (219.6 mg, 60%) as a brown solid (m.p. 96.8–98.9 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 7.44 (d, \(J\) = 8.4 Hz, 2 H), 7.30 (dd, \(J\) = 8.0, 1.6 Hz, 1 H), 7.25 (dd, \(J\) = 8.4, 1.2 Hz, 1 H), 7.15 (dt, \(J\) = 7.6, 1.6 Hz, 1 H), 6.97 (d, \(J\) = 8.8 Hz, 2 H), 6.96 (dt, \(J\) = 7.6, 1.6 Hz, 1 H), 5.89 (s, 1 H), 2.30 (s, 3 H), 1.81 (s, 6 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 142.5, 141.1, 137.7, 135.4, 128.7, 128.5, 128.2, 127.3, 127.2, 121.7, 58.5, 29.2, 21.3; IR (neat) 3292 (N–H) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{16}\)H\(_{18}\)BrNO\(_2\)S•Na 390.0139, found 390.0141 [M+Na]\(^+\).

3. Synthesis of 4-iodo-2-quinolones

Synthesis of silylalkyne **S1: In a sealed tube, a solution of 2-iodo-4-methylaniline (2.33 g, 10.0 mmol) in di-t-butyl dicarbonate (3.68 mL, 16.0 mmol) was heated at 90 °C for 2 days. To a solution of the crude product in DMF (50 mL) was added sodium hydride (60% oil, 0.80 g, 20.0 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 1 h. To the

resultant mixture was added benzyl bromide (1.43 mL, 12.0 mmol). The reaction mixture was stirred at room temperature for 1 h. The reaction was quenched with sat. NH₄Cl (20 mL), and the mixture was extracted with AcOEt (3 × 20 mL). The combined organic layer was washed with water (2 × 20 mL), brine (20 mL), and dried over MgSO₄. After concentration in vacuo, the crude product was purified by flash column chromatography on silica gel (hexane/EtOAc = 50:1~20:1) to afford tert-butyl benzyl(2-iodo-4-methylphenyl)carbamateN-protected o-iodoaniline as a yellow oil.

To a solution of the crude product obtained above (2.01 g, 4.75 mmol) in t-butyl methyl ether (20 mL) and diisopropylamine (4 mL) was added PdCl₂(PPh₃)₃ (33.3 mg, 0.0475 mmol) and Cul (18.1 mg, 0.095 mmol) at room temperature. The reaction mixture was degassed at −78 °C and to this mixture was added trimethylsilylacetylene (0.724 mL, 5.23 mmol). The reaction mixture was stirred at 50 °C for 5 h. Insoluble materials were filtered with a pad of Celite® and the filtrate was concentrated in vacuo. The obtained crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1~15:1) to afford silylalkyne S2 (898 mg, 23% over 3 steps) as a yellow oil; a mixture of two rotamers; ^1^H NMR (CDCl₃, 400 MHz, 25 °C) δ 7.31–7.19 (major+minor) (br m, 6 H), 7.03–6.89 (minor) (br m, 2 H), 6.89 (major) (d, J = 8.0 H, 1 H), 6.70 (major) (d, J = 8.0 H, 1 H), 5.20–4.34 (major+minor) (br m, 2 H), 2.27 (s, 3 H), 1.49 (minor)/1.36 (major) (br s, 9 H), 0.25 (major+minor) (br s, 9 H); ^1^C NMR (CDCl₃, 100 MHz, 25 °C) δ 154.5 (major)/154.2 (minor), 141.8 (minor)/141.4 (major), 138.3 (minor)/137.8 (major), 136.2 (minor)/135.9 (major), 133.5 (minor)/132.9 (major), 129.6 (minor)/129.3 (major), 128.8 (minor)/128.4 (major), 127.8 (major)/127.6 (minor), 126.8 (major/minor), 121.8 (major/minor), 102.0 (major/minor), 97.8 (major+minor), 79.9 (minor)/79.2 (major), 53.7 (minor)/52.6 (major), 28.1 (minor)/27.9 (major), 20.4 (major+minor), −0.4 (major+minor); IR (neat) 2154 (C=O), 1703 (C=O), 1250 (Si–CH₃), 848 (Si–CH₃) cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₃₁NO₂Si•Na 416.2022, found 416.2012 [M+Na]⁺.

Synthesis of propiolate S2: In a flask, CsF (693 g, 4.56 mmol) was heated under vacuum at 120 °C for 1 h. The flask was filled with CO₂ gas (balloon) and then with dry DMF (1 mL). To the resultant suspension was added drop-wise a solution of silylalkyne S1 (898 mg, 2.28 mmol) in dry DMF (6 mL) at room temperature. The reaction mixture was stirred at room temperature for 2 h. After addition of methyl iodide (170 µL, 2.74 mmol), the stirring was continued at room temperature for another 1.5 h. The reaction was quenched with sat. NH₄Cl (10 mL) and the whole mixture was extracted with AcOEt (3 × 10 mL). The combined organic layer was washed with water (2 × 10 mL), brine (10 mL), and dried over MgSO₄. After concentration in vacuo, the crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 30:1~15:1) to afford propiolate S2 (641 mg,
85%) as a yellow oil: a mixture of two rotamers; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 7.45–6.81 (major+minor) (br m, 8 H), 5.10–4.30 (major+minor) (br s, 2 H), 3.82 (major+minor) (s, 3 H), 2.29 (major+minor) (s, 3 H), 1.50 (minor)/1.37 (major) (br s, 9 H); \(^1^3\)C NMR (CDCl\(_3\), 100 MHz, 25 °C) \(\delta\) 154.2 (major+minor), 153.9 (major+minor), 143.0 (minor)/142.1 (major), 137.7 (minor)/137.3 (major), 136.4, (major+minor), 134.4 (minor)/134.0 (major), 132.0 (minor)/131.7 (major), 128.4 (major+minor), 128.1 (major+minor), 127.9 (major+minor), 127.7 (minor)/127.0 (major) 118.9 (major or minor), 83.6 (major)/83.2 (minor), 80.7 (minor)/80.1 (major), 54.1 (minor)/53.0 (major), 52.3 (major+minor), 27.8 (major+minor) 20.4 (major+minor); IR (neat) 2218 (C=C), 1712 (C=O) cm\(^{-1}\); HRMS (ESI) m/z calcd for C\(_{23}\)H\(_{25}\)NO\(_2\)•Na 402.1681, found 402.1672 [M+Na]\(^+\).

Representative procedure for preparation of 4-iodo-2-quinolones 2a –Synthesis of 2a:

![Methyl 3-(2-(benzyl(tert-butoxycarbonyl)amino)phenyl)propiolate](image)

To a solution of methyl 3-(2-(benzyl(tert-butoxycarbonyl)amino)phenyl)propiolate (365.2 mg, 1.0 mmol) in acetic acid (2 mL) was added sodium iodide (890.0 mg, 6.0 mmol) at room temperature. The reaction mixture was stirred at 110 °C for 1 h. The reaction was quenched with H\(_2\)O (10 mL) and the resultant mixture was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with sat. Na\(_2\)CO\(_3\) (10 mL), sat. Na\(_2\)S\(_2\)O\(_3\) (10 mL), and brine (10 mL). After dried over MgSO\(_4\), the solvents were removed in vacuo. The obtained crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 7:1) to afford 4-iodo-2-quinoline 2a (340.0 mg, 94%) as a white solid (m.p. 123.6–125.4 °C): \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 7.85 (dd, \(J = 8.4, 1.6\) Hz, 1 H), 7.61 (s, 1 H), 7.45 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 1 H) 7.33–7.18 (m, 7 H), 5.54 (s, 2 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 160.6, 137.8, 135.8, 133.9, 133.1, 131.7, 128.9, 127.4, 126.5, 123.1, 122.2, 115.31, 115.25, 46.3; IR (neat) 1645 (C=O) cm\(^{-1}\); HRMS (ESI) m/z calcd for C\(_{18}\)H\(_{12}\)INO•Na 383.9861, found 383.9851 [M+Na]\(^+\).

Analytical data for 2b: 306.7 g, 84%; yellow solid (m.p. 178.7–182.1 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 7.62 (s, 1 H), 7.58 (s, 1 H), 7.32–7.21 (m, 5 H), 7.19 (d, \(J = 6.8\) Hz, 1 H), 7.10 (d, \(J = 8.8\) Hz, 1 H), 5.52 (s, 2 H), 2.42 (s, 3 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 160.4, 135.9, 135.7, 133.5, 132.9, 132.8, 132.7, 128.7, 127.3, 126.4, 122.0, 115.14, 115.09, 46.1, 20.6; IR (neat) 1643 (C=O) cm\(^{-1}\); HRMS (ESI) m/z calcd for C\(_{17}\)H\(_{14}\)INO•Na 398.0018, found 398.0013 [M+Na]\(^+\).
Analytical data for 2c: 365.6 mg, 90%; white solid (m.p. 168.3–169.1 °C); 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.85 (d, J = 2.4 Hz, 1 H), 7.62 (s, 1 H), 7.37 (dd, J = 8.8 2.4 Hz, 1 H) 7.34–7.20 (m, 6 H), 5.51 (br s, 2 H); 13C NMR (100 MHz, CDCl3, 25 °C) δ 160.2, 136.4 135.4, 134.3, 133.1, 131.7, 129.0, 128.8, 127.6, 126.4, 123.5, 116.9, 113.3, 46.4; IR (neat) 1647 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C16H11ClINO•Na 417.9472, found 417.9477 [M+Na]⁺.

Analytical data for 2d: 369.7 mg, 95%; white solid (m.p. 151.5–153.2 °C); 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.61 (s, 1 H), 7.35–7.13 (m, 7 H), 7.04 (dd, J = 9.2, 2.8 Hz, 1 H), 5.52 (br s, 2 H), 3.87 (s, 3 H); 13C NMR (100 MHz, CDCl3, 25 °C) δ 160.2, 155.3, 153.9, 135.9, 133.6, 132.2, 128.8, 127.4, 126.4, 123.1, 120.1, 116.8, 116.1, 114.6, 55.7, 46.3; IR (neat) 1639 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C17H14INO•Na 413.9967, found 413.9960 [M+Na]⁺.

Analytical data for 2e: 391.7 mg, 87%; white solid (m.p. 137.6–138.0 °C); 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.59 (s, 1 H) 7.33–7.18 (m, 5 H), 6.47 (s, 1 H), 5.50 (br s, 2 H), 3.95 (s, 3 H), 3.81 (s, 3 H), 3.70 (s, 3 H), 3.60 (s, 3 H); 13C NMR (100 MHz, CDCl3, 25 °C) δ 160.6, 155.8, 150.3, 138.1, 136.1, 136.0, 133.2, 129.0, 127.5, 126.6, 109.2, 101.0, 94.2, 61.5, 60.9, 55.7, 47.0; IR (neat) 1643 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C19H13INO4•Na 474.0178, found 474.0180 [M+Na]⁺.

Analytical data for 2f: 145.2 mg, 89%; pale-yellow solid (m.p. 103.3–104.3 °C); 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.70 (dd, J = 8.4, 1.2 Hz, 1 H) 7.57 (ddd, J = 8.4, 7.2, 1.2 Hz, 1 H), 7.34 (ddd, J = 8.4, 7.2, 1.2 Hz, 1 H), 7.27 (dd, J = 8.4, 1.2 Hz, 1 H), 7.22 (s, 1 H); 13C NMR (100 MHz, CDCl3, 25 °C) δ 158.1, 151.3, 132.9, 132.4, 127.4, 125.1, 120.6, 120.1, 116.9; IR (neat) 1711 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C9H5IO2•Na 294.9232, found 294.9218 [M+Na]⁺.

4. Vinylogous Catellani reactions

Representative procedure (1) – Synthesis of 4aa: A solution of 4-iodo-2-quinoline 2a (72.4 mg, 0.20 mmol), 2-(2-bromophenyl)propan-2-ol 3a (43.2 mg, 0.20 mmol), Pd(OAc)₂ (2.26 mg, 0.01 mmol), norbornene (18.6 mg, 0.20 mmol), and K₂CO₃ (69.3 mg, 0.50 mmol) in dry DMF (4.0 mL) was degassed at –78 °C. The reaction mixture was heated at 105 °C for 2 h. The reaction was quenched with H₂O (10 mL) and the whole mixture was extracted with AcOEt (3 × 20 mL). The combined organic layer was washed with water (2 × 10 mL), brine (10 mL) and dried over MgSO₄. After concentration in
vacuo, the crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1) to afford 4aa (63.7 mg, 87%) as a white solid (m.p. 154.2–157.9 °C):

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.01 (dd, $J = 8.0$, 1.2 Hz, 1 H), 8.10 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.45 (ddd, $J = 8.8$, 6.8, 1.6 Hz, 1 H), 7.38 (dt, $J = 6.8$, 1.2 Hz, 1 H), 7.35–7.18 (m, 9 H), 5.64 (br s, 2 H), 1.78 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.5, 156.2, 138.8, 137.0, 136.9, 131.2, 128.8, 127.9, 127.8, 127.1, 126.9, 126.6, 125.8, 123.7, 122.1, 121.8, 116.5, 114.7, 106.5, 80.0, 45.9, 27.5; IR (neat) 1634 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{25}$H$_{21}$NO$_2$•Na 390.1470, found 390.1461 [M+Na]$^+$.

![Image of 4aa](image_url)

Analytical data for 4aa: 61.7 mg, 81%; yellow solid (m.p. 177.1–179.5 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.00 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.86 (s, 1 H), 7.37 (dt, $J = 7.6$, 1.2 Hz, 1 H), 7.33–7.19 (m, 8 H), 7.14 (d, $J = 8.4$ Hz, 1 H), 5.61 (br s, 2 H), 2.40 (s, 3 H), 1.77 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.3, 156.0, 137.0, 136.9, 132.5, 131.4, 128.7, 127.80, 127.78, 127.0, 126.5, 125.8, 123.2, 122.1, 116.4, 114.6, 106.5, 79.9, 45.8, 27.4, 20.7; IR (neat) 1631 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{26}$H$_{23}$NO$_2$•Na 404.1627, found 404.1620 [M+Na]$^+$.

![Image of 4ca](image_url)

Analytical data for 4ca: 64.9 mg, 81%; white solid (m.p. 175.8–179.4 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 8.99 (d, $J = 7.6$ Hz, 1 H), 8.04 (d, $J = 2.4$ Hz, 1 H), 7.42–7.22 (m, 9 H), 7.18 (d, $J = 8.8$ Hz, 1 H), 5.60 (br s, 2 H), 1.78 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.1, 155.0, 137.2, 137.1, 136.5, 131.1, 128.8, 128.3, 127.9, 127.6, 127.3, 126.5, 125.9, 123.0, 122.2, 117.6, 116.2, 107.3, 80.4, 46.0, 27.5; IR (neat) 1637 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{25}$H$_{20}$ClNO$_2$•Na 424.1080, found 424.1085 [M+Na]$^+$.

![Image of 4da](image_url)

Analytical data for 4da: 72.6 mg, 90%; white solid (m.p. 199.2–201.2 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.02 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.50 (d, $J = 2.4$ Hz, 1 H), 7.37 (dt, $J = 7.6$, 1.6 Hz, 1 H), 7.34–7.20 (m, 7 H), 7.18 (d, $J = 9.6$ Hz, 1 H), 7.06 (dd, $J = 9.2$, 2.8 Hz, 1 H), 5.61 (br s, 2 H), 3.87 (s, 3 H), 1.77 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.0, 155.6, 154.6, 137.04, 136.98, 133.5, 128.7, 127.9, 127.8, 127.09, 126.97, 126.5, 125.9, 122.1, 119.9, 117.2, 116.1, 106.9, 105.4, 80.0, 55.7, 45.9, 27.5; IR (neat) 1631 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{26}$H$_{23}$NO$_2$•Na 420.1576, found 420.1576 [M+Na]$^+$.

S8
Analytical data for 4ea: 39.3 mg, 44%; white solid (m.p. 158.0–158.5 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.92 (dd, J = 8.0, 1.2 Hz, 1 H), 7.36 (dt, J = 7.6, 1.2 Hz, 1 H), 7.33–7.19 (m, 7 H), 6.53 (s, 1 H), 5.60 (br s, 2 H), 3.93 (s, 3 H); 13C NMR (100 MHz, CDCl₃, 25 °C) δ 163.1, 157.6, 155.8, 151.8, 138.9, 137.1, 137.0, 136.7, 128.9, 127.7, 127.4, 127.3, 127.2, 126.7, 125.6, 121.7, 105.5, 105.4, 94.6, 79.5, 62.1, 61.2, 55.8, 46.8, 27.0; IR (neat) 1631 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₇NO₃•Na 480.1787, found 480.1789 [M+Na]⁺.

Analytical data for 4ab: 66.5 mg, 87%; white solid (m.p. 172.0–172.7 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.86 (s, 1 H), 8.10 (dd, J = 8.0, 1.2 Hz, 1 H), 7.44 (ddd, J = 8.8, 7.2, 1.6 Hz, 1 H), 7.34–7.18 (m, 7 H), 7.14 (d, J = 1.2 Hz, 2 H), 5.64 (br s, 2 H), 2.41 (s, 3 H); 13C NMR (100 MHz, CDCl₃, 25 °C) δ 161.5, 156.3, 138.7, 137.4, 136.8, 134.3, 131.1, 128.7, 128.6, 127.1, 126.7, 126.5, 126.2, 123.7, 122.1, 121.8, 116.6, 114.6, 106.5, 80.0, 45.8, 27.6, 21.5; IR (neat) 1633 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₂₃NO₂•Na 404.1627, found 404.1619 [M+Na]⁺.

Analytical data for 4ac: 63.6 mg, 83%; white solid (m.p. 128.2–129.1 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.90 (d, J = 8.4 Hz, 1 H), 8.09 (dd, J = 7.6, 1.2 Hz, 1 H), 7.43 (ddd, J = 8.8, 6.8, 1.6 Hz, 1 H), 7.34–7.17 (m, 8 H), 7.04 (d, J = 1.2 Hz, 1 H), 5.63 (br s, 2 H), 2.40 (s, 3 H), 1.76 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 161.5, 155.6, 138.6, 137.7, 137.1, 136.9, 130.9, 128.7, 128.4, 127.1, 126.5, 125.8, 124.1, 123.6, 122.8, 121.7, 116.6, 114.6, 106.6, 79.9, 45.8, 27.6, 21.5; IR (neat) 1633 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₂₃NO₂•Na 404.1627, found 404.1615 [M+Na]⁺.

Analytical data for 4ad: This compound was obtained as an inseparable mixture with remained 3d as a yellow foam. Thus, the yield was estimated as 74% by internal standard. Analytical sample was obtained by purification with HPLC; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 8.06 (dd, J = 8.0, 1.2 Hz, 1 H), 7.44 (ddd, J = 8.8, 6.8, 1.6 Hz, 1 H), 7.35–7.17 (m, 9 H), 7.14–7.08 (m, 1 H), 5.65 (br s, 2 H), 2.42 (s, 3 H), 1.74 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 160.3, 158.0, 140.7, 139.0, 137.1, 135.6, 131.2, 131.0, 128.8, 127.4, 127.1, 126.5, 126.0, 123.2, 121.6, 119.5, 117.0, 114.6, 109.9, 81.6, 46.0, 26.5, 22.9; IR (neat) 1641 (C=O) cm⁻¹; HRMS (DART) m/z calcd for C₂₆H₂₃NO₂•H 382.1807, found 382.1821 [M+H]⁺.
Analytical data for 4ae: 69.2 mg, 90%; white solid (m.p. 159.9–160.2 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 8.82 (dd, $J = 7.6$, 2.8 Hz, 1 H), 8.10 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.47 (dd, $J = 8.8$, 7.2, 2.0 Hz, 1 H), 7.34–7.16 (m, 8 H), 7.00 (dt, $J = 8.0$, 2.8 Hz, 1 H), 5.63 (br s, 2 H), 1.77 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 162.4 (d, $J = 242.2$ Hz), 161.3, 156.8, 139.0, 136.7, 132.6 (d, $J = 2.8$ Hz), 131.6, 129.1 (d, $J = 10.5$ Hz), 128.8, 127.2, 126.5, 123.9, 123.6 (d, $J = 8.6$ Hz), 121.9, 116.2, 114.7, 114.3 (d, $J = 22.9$ Hz), 112.8 (d, $J = 25.8$ Hz), 105.7 (d, $J = 1.9$ Hz), 80.1, 46.0, 27.7; 19F NMR (376 MHz, CDCl$_3$, 25 °C): δ –113.7; IR (neat) 1763 (C=O), 1637 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{25}$H$_{20}$FNO$_2$•Na 408.1376, found 408.1369 [M+Na]$^+$.

Analytical data for 4af: 67.7 mg, 84%; white solid (m.p. 157.5–158.7 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.10 (d, $J = 2.0$ Hz, 1 H), 8.10 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.47 (dd, $J = 8.4$, 5.6, 1.2 Hz, 1 H), 7.35–7.20 (m, 8 H), 7.16 (d, $J = 8.8$ Hz, 1 H), 5.63 (br s, 2 H), 1.76 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.2, 156.8, 139.0, 136.6, 135.1, 134.0, 131.7, 128.8, 128.6, 127.7, 127.2, 126.5, 125.7, 123.8, 123.5, 122.0, 116.2, 114.7, 105.5, 79.9, 45.9, 27.5; IR (neat) 1633 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{25}$H$_{20}$ClNO$_2$•Na 424.1073, found 424.1080 [M+Na]$^+$.

Analytical data for 4ag: 65.1 mg, 82%; white solid (m.p. 172.8–173.9 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 8.97 (d, $J = 7.2$ Hz, 1 H), 8.07 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.42 (dd, $J = 8.4$, 6.8, 1.6 Hz, 1 H), 7.34–7.18 (m, 7 H), 6.90 (dd, $J = 7.2$, 2.8 Hz, 1 H), 6.79 (d, $J = 2.8$ Hz, 1 H), 5.62 (br s, 2 H), 3.86 (s, 3 H), 1.74 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.5, 159.4, 154.7, 139.1, 138.4, 136.9, 130.7, 128.7, 127.5, 127.1, 126.5, 123.4, 121.8, 119.8, 116.6, 114.6, 111.6, 109.2, 106.5, 79.7, 55.3, 45.9, 27.4; IR (neat) 1633 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{25}$H$_{23}$NO$_3$•Na 420.1576, found 420.1563 [M+Na]$^+$.

Analytical data for 4ah: 65.5 mg, 81%; pale-brown solid (m.p. 216.3–221.4 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 8.62 (s, 1 H), 8.07 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.43 (ddd, $J = 8.6$, 7.0, 1.6 Hz, 1 H), 7.32–7.19 (m, 7 H), 6.75 (s, 1 H), 5.98 (s, 2 H), 5.63 (br s, 2 H), 1.73 (s, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.4, 155.0, 147.2, 146.9, 138.4, 136.8, 131.4, 130.9, 128.7, 127.1, 126.5, 123.4, 121.8, 121.2, 116.4, 114.6, 106.7, 106.6, 103.1, 101.1, 79.8, 45.9, 27.5; IR (neat) 1633 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{26}$H$_{21}$NO$_4$•Na 434.1368, found 434.1367 [M+Na]$^+$.
Analytical data for 4ai: 62.7 mg, 79%; white solid (m.p. 158.9–159.2 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.10 (dd, J = 8.0, 1.2 Hz, 1 H), 8.06 (dd, J = 8.0, 1.6 Hz, 1 H), 7.44 (dd, J = 8.8, 7.2, 1.6 Hz, 1 H), 7.36 (dt, J = 8.0, 1.6 Hz, 1 H), 7.33–7.18 (m, 8 H), 7.11 (dd, J = 7.2, 1.6 Hz, 1 H), 5.62 (br s, 2 H), 2.10 (q, J = 7.6 Hz, 4 H), 0.95 (t, J = 7.6 Hz, 6 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.6, 156.5, 138.9, 136.9, 133.7, 131.1, 128.7, 128.0, 127.6, 127.3, 127.1, 126.6, 126.0, 123.8, 123.6, 121.8, 116.3, 114.7, 105.5, 85.7, 45.9, 31.1, 8.1; IR (neat) 1633 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{27}$H$_{25}$NO$_2$•Na 418.1783, found 418.1778 [M+Na]$^+$.

Analytical data for 4aj: 59.5 mg, 74%; pale-brown solid (m.p. 219.6–221.5 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.00 (dd, J = 8.0, 1.2 Hz, 1 H), 8.17 (dd, J = 8.0, 1.2 Hz, 1 H), 7.46 (dd, J = 8.0, 7.6, 1.2 Hz, 1 H), 7.40–7.21 (m, 10 H), 5.63 (br s, 2 H), 2.37 (br d, J = 13.6 Hz, 2 H), 2.00–1.76 (m, 5 H), 1.71 (br d, J = 13.6 Hz, 2 H), 1.43–1.32 (m, 1 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.4, 155.6, 138.9, 137.2, 136.9, 131.1, 128.7, 127.9, 127.7, 127.14, 127.09, 126.6, 125.8, 123.5, 121.92, 121.88, 116.6, 114.7, 107.0, 80.4, 45.9, 34.8, 25.3, 21.7; IR (neat) 1633 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{28}$H$_{25}$NO$_2$•Na 430.1783, found 430.1775 [M+Na]$^+$.

Analytical data for 4ak: 60.0 mg, 72%; yellow solid (m.p. 171.5–177.4 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.01 (dd, J = 8.0, 1.2 Hz, 1 H), 8.24 (dd, J = 8.0, 1.6 Hz, 1 H), 7.48–7.42 (m, 2 H), 7.39 (dt, J = 7.2, 1.6 Hz, 1 H), 7.33–7.19 (m, 13 H), 5.72 (br d, J = 16.8 Hz, 1 H), 5.39 (br d, J = 16.8 Hz, 1 H), 2.18 (s, 3 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.2, 156.3, 144.1, 138.8, 136.7, 135.0, 131.2, 128.7, 128.3, 128.0, 127.9, 127.7, 127.6, 127.1, 126.4, 125.9, 125.8, 124.5, 123.5, 122.0, 116.3, 114.7, 107.6, 83.2, 45.9, 28.3; IR (neat) 1633 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcld for C$_{30}$H$_{23}$NO$_2$•Na 452.1627, found 452.1619 [M+Na]$^+$.

Analytical data for 4al: 51.8 mg, 60%; pale-yellow solid (m.p. 192.5–195.3 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 9.06 (dd, J = 8.0, 1.2 Hz, 1 H), 8.18 (dd, J = 8.0, 1.2 Hz, 1 H), 7.52–7.40 (m, 2 H), 7.37 (dt, J = 7.6, 1.2 Hz, 1 H), 7.32–7.18 (m, 9 H), 6.80 (dd, J = 5.2, 3.6 Hz, 1 H), 6.70 (dd, J = 3.6, 1.2 Hz, 1 H), 5.73 (br d, J = 16.8 Hz, 1 H), 5.43 (br d, J = 16.8 Hz, 1 H), 2.29 (s, 3 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 161.2, 155.8, 148.6, 138.7, 136.7, 134.8, 131.2, 128.7, 128.6, 127.8, 127.6, 127.0, 126.4, 126.2, 126.0,
125.9, 125.7, 123.8, 123.7, 121.9, 116.2, 114.6, 107.3, 80.8, 45.8, 29.0; IR (neat) 1633 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{28}H\(_{21}\)NO\(_2\)S•Na 458.1191, found 458.1172 [M+Na]\(^+\).

Analytical data for 4am: Because of instability under the reaction conditions, 2.5 equivs of 3m was used. The title compound was purified by short column chromatography and recrystallization; 54.6 mg, 61%; white solid (m.p. 126.8–128.5 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 9.21 (d, \(J = 7.6\) Hz, 1 H), 8.01 (dd, \(J = 8.0, 1.6\) Hz, 1 H), 7.52–7.44 (m, 2 H), 7.39–7.34 (m, 2 H), 7.32–7.20 (m, 7 H), 5.69 (br d, \(J = 16.8\) Hz, 1 H), 5.54 (br d, \(J = 16.8\) Hz, 1 H), 4.13 (dq, \(J = 10.8, 7.2\) Hz, 1 H), 4.08 (dq, \(J = 10.8, 7.2\) Hz, 1 H), 2.11 (s, 3 H), 1.02 (t, \(J = 7.2\) Hz, 3 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 162.7 (t, \(J = 31.5\) Hz), 161.0, 155.3, 138.7, 136.6, 131.6, 129.5, 128.7, 128.0, 127.8, 127.7, 127.1, 126.5, 126.0, 125.3, 123.6, 121.9, 115.1, 114.7, 114.2 (t, \(J = 262.2\) Hz), 105.2, 81.5 (t, \(J = 26.2\) Hz), 63.2, 45.9, 22.7, 13.4; \(^19\)F NMR (376 MHz, CDCl\(_3\), 25 °C): \(\delta\) –115.3; IR (neat) 1763 (C=O), 1637 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{28}H\(_{23}\)F\(_2\)NO\(_4\)•Na 498.1493, found 498.1495 [M+Na]\(^+\).

Analytical data for 4an: 82.4 mg, 94%; yellow oil; \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 9.04 (d, \(J = 8.0\) Hz, 1 H), 8.10 (d, \(J = 8.0\) Hz, 1 H), 7.44 (ddd, \(J = 8.0, 7.2, 1.2\) Hz, 1 H), 7.37 (dt, \(J = 7.2, 1.6\) Hz, 1 H), 7.34–7.18 (m, 9 H), 5.63 (br s, 2 H), 5.06 (br s, 1 H), 2.16–2.08 (m, 3 H), 2.01–1.96 (m, 1 H), 1.78 (s, 3 H), 1.62 (s, 3 H), 1.48 (s, 3 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 161.4, 156.0, 138.7, 136.8, 135.9, 132.0, 131.1, 128.7, 127.7, 127.6, 127.1, 127.0, 126.5, 125.8, 123.53, 123.49, 122.8, 121.8, 116.3, 114.6, 106.1, 82.2, 45.8, 39.7, 25.8, 25.5, 22.6, 17.4; IR (neat) 1636 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{30}H\(_{29}\)NO\(_2\)•Na 458.2096, found 458.2091 [M+Na]\(^+\).

Analytical data for 4ao: 25.0 mg, 34%; white solid (m.p. 188.2–191.9 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 8.77 (d, \(J = 8.0\) Hz, 1 H), 8.11 (dd, \(J = 8.0, 1.6\) Hz, 1 H), 7.44 (ddd, \(J = 8.8, 7.2, 1.6\) Hz, 1 H), 7.45–7.18 (m, 8 H), 7.10 (d, \(J = 7.2\) Hz, 1 H), 5.75 (br d, \(J = 16.8\) Hz, 1 H), 5.54 (br d, \(J = 16.8\) Hz, 1 H), 2.92–2.88 (m, 2 H), 2.40–2.28 (m, 2 H), 2.18–1.96 (m, 2 H), 1.51 (s, 3 H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 161.5, 156.0, 138.7, 136.9, 133.3, 131.3, 131.1, 128.7, 128.4, 127.7, 127.1, 127.0, 126.6, 123.7, 123.2, 121.8, 116.6, 114.6, 107.6, 78.4, 45.9, 35.9, 28.1, 24.5, 20.1; IR (neat) 1633 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{27}H\(_{23}\)NO\(_2\)•Na 416.1627, found 416.1628 [M+Na]\(^+\).
Analytical data for 4ap: 27.9 mg, 39%; orange solid (m.p. 157.6–159.1 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 8.92 (dd, \(J = 8.0, 1.2\) Hz, 1 H), 8.09 (dd, \(J = 8.0, 1.6\) Hz, 1 H), 7.45 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 1 H), 7.40 (dt, \(J = 8.0, 1.2\) Hz, 1 H), 7.35–7.14 (m, 9 H), 5.80–5.43 (br m, 2 H), 5.53 (q, \(J = 6.4\) Hz, 1 H), 1.73 (d, \(J = 6.4\) Hz, 3 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 161.5, 156.9, 138.8, 136.8, 133.1, 131.3, 128.8, 128.3, 127.8, 127.6, 127.1, 126.6, 125.6, 123.6, 123.1, 121.9, 116.3, 114.7, 107.0, 75.3, 45.9, 20.1; IR (neat) 1633 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{24}\)H\(_{19}\)NO\(_2\)\(\cdot\)Na 376.1314, found 376.1303 [M+Na]\(^+\).

Analytical data for 4aq: 11.9 mg, 17%; orange solid (m.p. 130.4–132.3 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 8.86 (d, \(J = 8.0\) Hz, 1 H), 8.06 (dd, \(J = 7.6, 1.6\) Hz, 1 H), 7.45 (ddd, \(J = 8.4, 7.2, 1.6\) Hz, 1 H), 7.42 (t, \(J = 6.8\), 1 H), 7.35–7.14 (m, 9 H), 5.64 (br s, 2 H), 5.34 (s, 2 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 161.4, 158.3, 138.7, 136.8, 131.4, 128.8, 128.7, 128.6, 128.5, 127.7, 127.2, 126.6, 125.4, 123.8, 123.6, 121.9, 115.8, 114.8, 107.7, 69.5, 45.8; IR (neat) 1633 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{23}\)H\(_{17}\)NO\(_2\)\(\cdot\)Na 362.1157, found 362.1149 [M+Na]\(^+\).

Analytical data for 8: 64.6 mg, 88%; white solid (m.p. 150.2–153.8 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 9.05 (d, \(J = 8.4\) Hz, 1 H), 7.60 (dd, \(J = 7.2, 1.2\) Hz, 1 H), 7.42 (ddd, \(J = 8.8, 7.2, 1.6\) Hz, 1 H), 7.37–7.15 (m, 10 H), 5.61 (br s, 2 H), 4.91 (br s, 1 H), 1.63 (s, 6 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) (one overlapping Csp\(^2\) signal) \(\delta\) 160.9, 145.2, 138.9, 137.6, 137.3, 130.6, 129.6, 128.7, 127.0, 126.9, 126.5, 126.0, 122.0, 121.3, 120.3, 115.7, 114.3, 102.3, 53.7, 45.7, 29.6; IR (neat) 3338 (N=H), 1606 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{25}\)H\(_{22}\)NO\(_3\)\(\cdot\)Na 389.1630, found 389.1622 [M+Na]\(^+\).

Three-component coupling products 10a,b and 11 were also obtained under the Catellani reaction condition.

Analytical data for 10a: 103.3 mg, 85%; white solid (m.p. 203.4–205.3 °C); \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 9.27 (dd, \(J = 8.4, 1.2\) Hz, 1 H), 7.69 (dd, \(J = 7.2, 1.2\) Hz, 1 H), 7.48–7.21 (m, 11 H), 7.20 (t, \(J = 8.0\) Hz, 1 H), 6.92 (d, \(J = 8.0\) Hz, 2 H), 5.86 (br d, \(J = 13.6\) Hz, 1 H), 5.42 (br d, \(J = 13.6\) Hz, 1 H), 4.72 (s, 1 H), 3.80 (d, \(J = 9.2\) Hz, 1 H), 3.29 (d, \(J = 9.6\) Hz, 1 H), 2.19 (d, \(J = 3.2\) Hz, 1 H), 2.00 (s, 1 H), 1.98 (s, 3 H), 1.80 (s, 6 H), 1.79–1.51 (m, 4 H), 1.65 (d, \(J = 11.0\) Hz, 1 H), 1.00 (d, \(J = 11.0\) Hz, 1 H); \(^{13}\)C NMR (100 MHz,
CDCl₃, 25 °C) δ 160.3, 143.2, 142.7, 139.4, 139.1, 138.8, 136.8, 136.6, 132.3, 129.8, 129.0, 128.8, 128.1, 127.5, 127.2, 127.0, 126.6, 125.7, 124.9, 123.8, 122.0, 120.0, 115.0, 60.3, 51.5, 46.8, 46.5, 44.9, 42.6, 33.6, 33.4, 31.2, 30.6, 29.2, 20.8; IR (neat) 3271 (N–H), 1630 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C₃₉H₃₈N₂O₃S•Na 637.2501, found 637.2494 [M+Na]⁺.

Analytical data for 10b: 76.5 mg, 51%; brown solid (m.p. 114.2–115.4 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 9.20 (d, J = 8.0 Hz, 1 H), 7.85 (d, J = 8.0 Hz, 1 H), 7.47 (d, J = 8.0 Hz, 2 H), 7.41–7.14 (m, 10 H), 7.03 (d, J = 8.0 Hz, 2 H), 5.84 (br s, 1 H), 5.44 (br s, 1 H), 5.15 (s, 1 H), 4.73 (dd, J = 10.4, 6.0 Hz, 1 H), 4.68 (d, J = 9.2 Hz, 1 H), 4.61–4.55 (m, 1 H), 4.41 (dd, J = 12.0, 6.4 Hz, 1 H), 4.19 (t, J = 11.4 Hz, 1 H), 3.60 (d, J = 9.6 Hz, 1 H), 2.57 (br s, 1 H), 2.45 (br s, 1 H), 2.31 (s, 2 H), 2.21 (s, 3 H), 2.14 (s, 3 H), 2.07 (s, 3 H), 1.98 (d, J = 11.2 Hz, 1 H), 1.85 (s, 3 H), 1.70 (s, 3 H), 1.22 (d, J = 12.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 171.0, 170.5, 160.1, 142.8, 140.7, 139.8, 138.7, 136.6, 135.0, 133.2, 129.7, 129.4, 128.7, 128.2, 127.1 (2C), 126.7, 126.5, 125.9, 125.2, 124.7, 121.7, 119.8, 114.9, 62.5, 62.3, 60.7, 52.8, 49.2, 46.5, 42.2, 39.7, 38.2, 36.5, 35.7, 33.4, 32.1, 21.18, 21.11; IR (neat) 3253 (N–H), 1739 (C=O), 1633 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C₄₃H₄₆N₂O₇S•Na 781.2923, found 781.2904 [M+Na]⁺.

The reaction of 2a with 3o afforded an inseparable mixture of S₃ and S₄ (35.5 mg) in a ratio of S₃/S₄ = 2:1. Analytically pure sample of S₄ was obtained by partial separation using preparative HPLC. In comparison with the spectral data of 10, S₄ was tentatively assigned as the three-component annulation product. Although S₄ was obtained as a single diastereomer, its stereochemistry could not be elucidated. The structure of S₃ was tentatively assigned as a singlet of the C4 proton of the quinolone ring was observed at δ 7.69 ppm.

Analytical data for S₃: 21.9 mg, 28% based on ¹H NMR analysis; colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.69 (s, 1 H), 7.59 (dd, J = 8.0, 1.2 Hz, 1 H), 7.44 (ddd, J = 8.8, 7.2, 1.6 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 1 H), 7.33–7.22 (m, 5 H), 7.22 (d, J = 6.8 Hz, 1 H), 7.21 (d, J = 6.8 Hz, 1 H), 7.17 (d, J = 7.2 Hz, 1 H), 6.97 (dd, J = 7.2, 1.2 Hz, 1 H), 5.72 (br d, J = 15.8 Hz, 1 H), 5.52 (br d, J = 15.8 Hz, 1 H), 3.01–2.84 (m, 2 H), 2.09–1.76 (m, 4 H), 1.75 (br s, 1 H), 1.40 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 164.1, 141.8, 138.8, 137.9, 137.5, 137.3, 136.4, 136.2, 130.2, 130.1, 128.8, 128.7, 127.3, 126.9, 126.8, 122.5, 121.1, 115.1, 71.1, 46.8, 41.8, 31.1, 30.2, 20.0; IR (neat) 3365 (O–H), 1631 (C=O) cm⁻¹; HRMS (ESI) m/z calcd for C₂₇H₂₅NO₂•Na 418.1783, found 418.1792 [M+Na]⁺.
5. Control Experiments

Reaction of 2a with 3a in the absence of norbornene. Homo coupling product 5 was obtained under the Catellani reaction conditions, except for using 10 mol % of Pd(OAc)\(_2\) in the absence of norbornene.

Analytical data for 5:

- **S15**: 64.6 mg, 88%; white solid (m.p. 246.8–249.7 °C);
- \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 7.47 (ddd, \(J = 8.4, 7.2, 1.2\) Hz, 2 H), 7.42–7.27 (m, 14 H), 7.08 (ddd, \(J = 8.0, 7.2, 0.8\) Hz, 2 H), 6.87 (s, 2 H), 5.70 (br d, \(J = 15.6\) Hz, 2 H), 5.62 (br d, \(J = 15.6\) Hz, 2 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 161.6, 146.6, 139.6, 136.1, 131.3, 128.9, 127.5, 126.7, 122.5, 121.8, 119.9, 115.5, 46.3; IR (neat) 1652 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{32}\)H\(_{24}\)N\(_2\)O\(_2\)•Na 491.1736, found 491.1747 [M+Na]^+.

Synthesis of 4fa: A solution of 4-iodocoumarin 2f (30.0 mg, 0.11 mmol), 2-(2-bromophenyl)propan-2-ol 3a (23.7 mg, 0.11 mmol), Pd(OAc)\(_2\) (1.2 mg, 0.006 mmol), P(2-furyl)\(_3\) (2.6 mg, 0.011 mmol), norbornene (10.4 mg, 0.11 mmol), and K\(_2\)CO\(_3\) (38.1 mg, 0.28 mmol) in dry m-xylene (2.2 mL) was degassed at −78 °C. The reaction mixture was heated at 140 °C for 18 h. After cooling to room temperature, the crude mixture was purified by flash column chromatography on silica gel (hexane/EtOAc = 20:1~8:1) to afford 4fa (25.0 mg, 82%) as a yellow foam:

- \(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta\) 8.68 (d, \(J = 8.0\) Hz, 1 H), 7.91 (dd, \(J = 8.0, 1.2\) Hz, 1 H), 7.57 (ddd, \(J = 8.0, 7.2, 1.2\) Hz, 1 H), 7.40 (dt, \(J = 8.0, 1.2\) Hz, 1 H), 7.36–7.29 (m, 3 H), 7.22 (d, \(J = 8.0\) Hz, 1 H), 1.78 (s, 6 H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta\) 160.2, 159.2, 152.9, 136.0, 132.3, 128.3, 128.1, 125.1, 125.0, 123.9, 123.1, 122.3, 116.3, 115.8, 101.4, 81.5, 27.8; IR (neat) 1714 (C=O) cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{18}\)H\(_{14}\)O\(_3\)•Na 301.0841, found 301.0864 [M+Na]^+.
Reaction of 2a with o-bromophenol. 4-aryloxy-2-quinolone 6b was obtained under the Catellani reaction conditions, except for using 10 mol % of Pd(OAc)$_2$ and 1 equiv of norbornene.

Analytical data for 6b: 21.7 mg, 27%; white solid (m.p. 246.8–249.7 °C); 1H NMR (400 MHz, CDCl$_3$, 25 °C) δ 8.23 (dd, $J = 7.6$, 1.2 Hz, 1 H), 7.71 (dd, $J = 8.0$, 1.2 Hz, 1 H), 7.51 (dt, $J = 7.6$, 1.6 Hz, 1 H), 7.43 (dt, $J = 7.6$, 1.6 Hz, 1 H), 7.34–7.18 (m, 9 H), 5.76 (s, 1 H), 5.53 (br s, 2 H); 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ 163.5, 161.7, 150.3, 139.6, 136.5, 134.3, 131.7, 129.2, 128.8, 127.7, 127.2, 126.5, 123.6, 116.4, 116.0, 115.1, 100.0, 45.7; IR (neat) 1647 (C=O) cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{22}$H$_{16}$BrNO$_2$•Na 428.0262 found 428.0268 [M+Na]$^+$.

Preparation of 2a-d$_1$: To a solution of methyl 3-(2-(benzyl(tert-butoxycarbonyl)amino)phenyl)propiolate (182.9 mg, 0.5 mmol) in acetic acid-d$_4$ (1 mL) was added sodium iodide (448.7 mg, 3.0 mmol) at room temperature. The reaction mixture was stirred at 110 °C for 1 h. The reaction was quenched with H$_2$O (10 mL) and the resultant mixture was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with sat. Na$_2$CO$_3$ (10 mL), sat. Na$_2$S$_2$O$_3$ (10 mL), and brine (10 mL). After dried over MgSO$_4$, the solvents were removed in vacuo. The obtained crude material was purified by flash column chromatography on silica gel (hexane/EtOAc = 8:1) to afford 4-iodo-2-quinolone 2a-d$_1$ (85%D, 169.2 mg, 94%) as a white solid (m.p. 125.1–127.1 °C).

Competition experiment using 2a-d$_1$: In a similar manner with the reaction of 2a with 3a, the reaction of 4-iodo-2-quinolone 2a (51.1 mg, 0.14 mmol) and 2a-d$_1$ (85%D, 72.4 mg, 0.20 mmol) with 2-(2-bromophenyl)propan-2-ol 3a (37.0 mg, 0.17 mmol) was performed in the presence of Pd(OAc)$_2$ (1.97 mg, 0.009 mmol), norbornene (37.0 mg, 0.17 mmol), and K$_2$CO$_3$ (58.8 mg, 0.42 mmol) in dry DMF (3.4 mL) at 105 °C for 1 h. After an usual purification, 2a-d$_1$ (51%D, 60.0 mg, 49%) was recovered along with 4aa (52.9 mg, 42%).

6. Single Crystal X-ray Diffraction Study
A single crystal of 10a was mounted on a glass fiber, and diffraction data were collected in θ ranges specified in Table S1 at 123 K on a Bruker D8 QUEST diffractometer with graphite monochromatized Mo Kα radiation ($\lambda = 0.71073$ Å). The absorption correction was made using SADABS. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 by using SHELXL-2013.12 All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions. Final refinement details are compiled in Table S1. The supplementary crystallographic data

for this paper (CCDC 1557549) can also be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Table S1. Selected crystallographic data and collection parameters for 10a.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C_{39}H_{38}N_{2}O_{3}S</td>
</tr>
<tr>
<td>fw</td>
<td>614.77</td>
</tr>
<tr>
<td>crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P21/c</td>
</tr>
<tr>
<td>a, Å</td>
<td>16.5942(7)</td>
</tr>
<tr>
<td>b, Å</td>
<td>8.7199(4)</td>
</tr>
<tr>
<td>c, Å</td>
<td>21.4742(10)</td>
</tr>
<tr>
<td>β, deg</td>
<td>93.5160(10)</td>
</tr>
<tr>
<td>volume, Å³</td>
<td>3101.5(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>D (calcd), Mg m⁻³</td>
<td>1.317</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>0.147</td>
</tr>
<tr>
<td>F(000)</td>
<td>1304</td>
</tr>
<tr>
<td>crystal size, mm</td>
<td>0.25 x 0.2 x 0.05</td>
</tr>
<tr>
<td>θ range for data collection, deg</td>
<td>2.33 to 25.04</td>
</tr>
<tr>
<td>index ranges</td>
<td>-19≤h≤17, -10≤k≤10, -24≤l≤25</td>
</tr>
<tr>
<td>reflections collected</td>
<td>20548</td>
</tr>
<tr>
<td>independent reflections [R(int)]</td>
<td>5453 [R(int) = 0.0258]</td>
</tr>
<tr>
<td>coverage of independent reflections</td>
<td>99.4%</td>
</tr>
<tr>
<td>max. and min. transmission</td>
<td>0.9930/0.9640</td>
</tr>
<tr>
<td>data / restraints / parameters</td>
<td>5453 / 0 / 410</td>
</tr>
<tr>
<td>goodness-of-fit on F²</td>
<td>1.038</td>
</tr>
<tr>
<td>R₁, wR₂ [I > 2σ(I)]</td>
<td>0.0371, 0.0940</td>
</tr>
<tr>
<td>R₁, wR₂ (all data)</td>
<td>0.0455, 0.0992</td>
</tr>
<tr>
<td>Weighting scheme</td>
<td>w = 1/[σ²(Fo²) + (0.0454P)²]</td>
</tr>
<tr>
<td>Where P = (Fo² + 2Fc²)/3</td>
<td></td>
</tr>
<tr>
<td>extinction coefficient</td>
<td>0.0058(5)</td>
</tr>
<tr>
<td>largest diff. peak and hole, e Å⁻³</td>
<td>0.400 and -0.756</td>
</tr>
<tr>
<td>R.M.S. deviation from mean, e Å⁻³</td>
<td>0.048</td>
</tr>
</tbody>
</table>
7. DFT Calculations

The Gaussian 09 program package was used for all geometry optimizations.\(^{13}\) The geometries of the stationary points and transition states were fully optimized using the Becke’s three-parameter hybrid density functional method (B3LYP)\(^{14}\) with a double-ζ basis set with the relativistic effective core potential of Hay and Wadt (LanL2DZ)\(^{15}\) for PD, K, Br, and I and the 6-31G(d)\(^{16}\) basis sets for other elements. The vibrational frequencies and thermal correction to Gibbs free energy (TCGFE) including zero-point energy were calculated at the same level of theory. The obtained structures were characterized by the number of imaginary frequencies (IF, one or zero for transition or ground states, respectively). The connectivity of each step was also confirmed by intrinsic reaction coordinate (IRC) calculation\(^{17}\) from the transition states followed by optimization of the resultant geometries. Single-point energies for geometries obtained by the above method were calculated using the Truhlar’s M06L functional\(^{18}\) with the basis sets including the Stuttgart-Dresden-Bonn energy-consistent pseudopotential (SDD)\(^{19}\) for Pd, K, Br, and I, and the 6-311++G(d,p) basis sets\(^{20}\) for other elements. To examine the solvent effect, the above single-point energy calculations were performed using the polarizable continuum model (PCM)\(^{21}\) method with

dielectric constants (e) of 37.219 for DMF. The obtained energies, ZPEs, TCGFEs, and IF are summarized in Tables S1 and S2.

Table S1. Summary of theoretical calculations.

<table>
<thead>
<tr>
<th>Model</th>
<th>Energy/au</th>
<th>TCGFE/au</th>
<th>IF/cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-903.92380121</td>
<td>0.208200</td>
<td></td>
</tr>
<tr>
<td>TS_{AB}</td>
<td>-903.91752127</td>
<td>0.208824</td>
<td>90.6105i</td>
</tr>
<tr>
<td>B</td>
<td>-903.95240808</td>
<td>0.208546</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-928.15699874</td>
<td>0.262028</td>
<td></td>
</tr>
<tr>
<td>TS_{CD}</td>
<td>-928.15480827</td>
<td>0.264639</td>
<td>186.7456i</td>
</tr>
<tr>
<td>D</td>
<td>-928.19347245</td>
<td>0.267841</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-1185.15306660</td>
<td>0.304747</td>
<td></td>
</tr>
<tr>
<td>TS_{EF}</td>
<td>-1185.12721816</td>
<td>0.302948</td>
<td>1158.9234i</td>
</tr>
<tr>
<td>F</td>
<td>-1185.15737748</td>
<td>0.307417</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>-1275.72843281</td>
<td>0.37030</td>
<td></td>
</tr>
<tr>
<td>TS_{GH}</td>
<td>-1275.71791518</td>
<td>0.374412</td>
<td>183.3263i</td>
</tr>
<tr>
<td>H</td>
<td>-1275.76040296</td>
<td>0.375902</td>
<td></td>
</tr>
<tr>
<td>TS_{HI}</td>
<td>-1275.74269491</td>
<td>0.376440</td>
<td>293.3224i</td>
</tr>
<tr>
<td>I</td>
<td>-1275.77716853</td>
<td>0.376514</td>
<td></td>
</tr>
<tr>
<td>TS_{IJ}</td>
<td>-1275.74207050</td>
<td>0.371758</td>
<td>216.5692i</td>
</tr>
<tr>
<td>J</td>
<td>-1275.76300169</td>
<td>0.368791</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-1259.96674081</td>
<td>0.264666</td>
<td></td>
</tr>
<tr>
<td>TS_{KL}</td>
<td>-1259.95703610</td>
<td>0.261685</td>
<td>183.1084i</td>
</tr>
<tr>
<td>L</td>
<td>-1259.96373424</td>
<td>0.262421</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>-1259.94610607</td>
<td>0.263780</td>
<td>18.4857i</td>
</tr>
<tr>
<td>N</td>
<td>-1259.94765157</td>
<td>0.262201</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-1237.51654708</td>
<td>0.309351</td>
<td></td>
</tr>
<tr>
<td>TS_{OP}</td>
<td>-1237.48926672</td>
<td>0.307520</td>
<td>285.5029i</td>
</tr>
<tr>
<td>P</td>
<td>-1237.53496141</td>
<td>0.308553</td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>-248.55653071</td>
<td>0.073913</td>
<td></td>
</tr>
<tr>
<td>NBE</td>
<td>-272.75700877</td>
<td>0.125076</td>
<td></td>
</tr>
<tr>
<td>KOAc</td>
<td>-256.95553030</td>
<td>0.015930</td>
<td></td>
</tr>
<tr>
<td>3q</td>
<td>-359.58744560</td>
<td>0.087129</td>
<td></td>
</tr>
<tr>
<td>AcOH•KI</td>
<td>-269.01218346</td>
<td>0.026055</td>
<td></td>
</tr>
<tr>
<td>AcOH•KBr</td>
<td>-270.98715185</td>
<td>0.026425</td>
<td></td>
</tr>
</tbody>
</table>

Table S2. Summary of theoretical calculations.

<table>
<thead>
<tr>
<th>Model</th>
<th>Energy/au</th>
<th>TCGFE/au</th>
<th>IF/cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>−1180.74998304</td>
<td>0.282833</td>
<td></td>
</tr>
<tr>
<td>TS(_{ab})</td>
<td>−1180.66655689</td>
<td>0.276263</td>
<td>1452.2522i</td>
</tr>
<tr>
<td>b</td>
<td>−1180.74762287</td>
<td>0.281407</td>
<td></td>
</tr>
<tr>
<td>sG</td>
<td>−1354.36647709</td>
<td>0.426254</td>
<td></td>
</tr>
<tr>
<td>TS(_{GIl})</td>
<td>−1354.35771842</td>
<td>0.428265</td>
<td>177.35333i</td>
</tr>
<tr>
<td>sH</td>
<td>−1354.40327149</td>
<td>0.430054</td>
<td></td>
</tr>
<tr>
<td>TS(_{Hi})</td>
<td>−1354.38681257</td>
<td>0.430146</td>
<td>284.8040i</td>
</tr>
<tr>
<td>sI</td>
<td>−1354.41635366</td>
<td>0.429870</td>
<td></td>
</tr>
<tr>
<td>TS(_{Ij})</td>
<td>−1354.38036698</td>
<td>0.425249</td>
<td>218.9568i</td>
</tr>
<tr>
<td>sJ</td>
<td>−1354.39827864</td>
<td>0.423347</td>
<td></td>
</tr>
<tr>
<td>sK</td>
<td>−1338.60414126</td>
<td>0.317568</td>
<td></td>
</tr>
<tr>
<td>TS(_{KL})</td>
<td>−1338.59692906</td>
<td>0.315178</td>
<td>158.5032i</td>
</tr>
<tr>
<td>sL</td>
<td>−1338.60227920</td>
<td>0.317204</td>
<td></td>
</tr>
<tr>
<td>sN</td>
<td>−1338.58196257</td>
<td>0.317234</td>
<td>120.4171i*</td>
</tr>
<tr>
<td>sO</td>
<td>−1316.15156516</td>
<td>0.362564</td>
<td></td>
</tr>
<tr>
<td>TS(_{OP})</td>
<td>−1316.13181474</td>
<td>0.361192</td>
<td>249.2817i</td>
</tr>
<tr>
<td>sP</td>
<td>−1316.18100897</td>
<td>0.359778</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>−438.22767274</td>
<td>0.143038</td>
<td></td>
</tr>
</tbody>
</table>

*Residual imaginary frequency due to the twist motion of one of two methyl groups at the benzylic position.

Scheme S1 CMD step of model complex a leading to palladacycle complex b. Relative Gibbs free energies in DMF at 298 K, 1 atm are indicated in parentheses.
Scheme S2 Oxidative addition/reductive elimination steps of model complex sG and subsequent deinsertion of NBE from intermediate complex sI. Relative Gibbs free energies in DMF at 298 K, 1 atm are indicated in parentheses.
Scheme S3 Deprotonation of benzylic alcohol of model complex sK and subsequent bromide dissociation from intermediate complex sL. Relative Gibbs free energies in DMF at 298 K, 1 atm are indicated in parentheses.

Scheme S4 Reductive elimination from model complex sO affording the final product complex sP. Relative Gibbs free energies in DMF at 298 K, 1 atm are indicated in parentheses.
Standard orientations

A

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.919466</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.865256</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.611929</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.182617</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1.517888</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>2.280009</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1.965227</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0.127863</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>-0.307926</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>1.453691</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.769513</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-0.406821</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.942585</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0.741523</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>0</td>
<td>2.901392</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>0</td>
<td>2.206125</td>
</tr>
<tr>
<td>17</td>
<td>46</td>
<td>0</td>
<td>-0.535838</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>0</td>
<td>0.750889</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>0</td>
<td>-2.213404</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>-2.136069</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>0</td>
<td>-3.192224</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-4.539634</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>-5.185694</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>-4.963086</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-4.488184</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-3.032199</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-3.382735</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-3.607205</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-1.977951</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-1.175004</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>2.886424</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>2.170895</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>3.639470</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>3.370322</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>2.014595</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1.963876</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>2.926093</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.077296</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2.844660</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>3.803799</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>3.123927</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>1.044885</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0.419591</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>2.798953</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>1.913477</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0.355672</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>3.459690</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1.904883</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>0</td>
<td>4.581713</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>0</td>
<td>3.725431</td>
</tr>
<tr>
<td>17</td>
<td>46</td>
<td>0</td>
<td>0.455374</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>0</td>
<td>1.398939</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>0</td>
<td>-1.294586</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>-1.273499</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>0</td>
<td>-2.357823</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-3.671293</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>-4.366879</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>-4.068686</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-3.570205</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.263265</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-2.593273</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.890690</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-1.227797</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-0.342924</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>4.622596</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>4.054027</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>5.277813</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>5.221390</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.988298</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.956630</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>2.052909</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-0.090734</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>2.044845</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>3.171643</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2.143530</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-0.088016</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>-0.896940</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>2.030635</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.978852</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-0.901098</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>2.844814</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0.995092</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>0</td>
<td>4.121563</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>0</td>
<td>3.097155</td>
</tr>
<tr>
<td>17</td>
<td>46</td>
<td>0</td>
<td>-0.602591</td>
</tr>
<tr>
<td>18</td>
<td>53</td>
<td>0</td>
<td>-0.084038</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>0</td>
<td>-2.417451</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>-2.887803</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>0</td>
<td>-3.957871</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-4.660701</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>-4.644460</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>-5.703937</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-4.164443</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-4.459467</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-5.494600</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-4.431201</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-3.842380</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-2.440012</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>4.211628</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>3.859876</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>4.717293</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>4.904769</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-2.062091</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.868482</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.690269</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.316227</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-2.046967</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-2.005796</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-3.986361</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.905029</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-3.316227</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-2.046967</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.687196</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-0.960069</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-0.614987</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.091837</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.693974</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0.100072</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-3.367602</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>1.287376</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>1.660927</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>2.169658</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0.768317</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>3.012192</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>3.568315</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>1.912420</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>1.171440</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-0.251781</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>3.407089</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>2.498248</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>0.468204</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>4.426796</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>2.830336</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>4.387175</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>3.915662</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
<td>0</td>
<td>-0.369554</td>
</tr>
<tr>
<td>35</td>
<td>53</td>
<td>0</td>
<td>-1.714645</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>0</td>
<td>5.305596</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>5.360962</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>5.779218</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>5.819713</td>
</tr>
</tbody>
</table>
TS_{CD}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1.064080</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2.295785</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.523714</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-0.153819</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1.028407</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.128037</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-0.861399</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-0.711624</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.795684</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>2.471458</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.571273</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>2.214482</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>2.389656</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>1.086590</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0.416583</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>3.247484</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-0.113523</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>4.128987</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>4.558551</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>5.009153</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>3.688052</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>5.935090</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>6.430146</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>4.722716</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>1.37219</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>2.646918</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>6.376863</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>5.489307</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.449181</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>7.417196</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>5.857535</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>7.234111</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>6.820795</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
<td>0</td>
<td>2.617096</td>
</tr>
<tr>
<td>35</td>
<td>53</td>
<td>0</td>
<td>1.290372</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-2.349244</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.870690</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.006892</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.131124</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-2.541785</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-2.618624</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-3.684245</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.855330</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.027555</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.118598</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.482444</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-0.557456</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-0.992208</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.258523</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-1.824199</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-0.170208</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.364097</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.900022</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>1.382024</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>1.799277</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0.544974</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>2.761291</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>3.222965</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>1.566811</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>1.030571</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-0.511687</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>3.241613</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>2.387504</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>0.360546</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>4.286049</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>2.784289</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.667608</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.121739</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.745278</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-4.109180</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.110249</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.958115</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.732017</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-4.680263</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.872697</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.835553</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-2.295066</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.842319</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.514999</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.208927</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.802224</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.590317</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.826768</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.421358</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>-0.171827</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.661700</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-1.191106</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.171705</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.012492</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0.645898</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-0.917266</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-2.223894</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.438575</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.554381</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2.097371</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.720309</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.290533</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.155885</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0.094139</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-0.214675</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-0.332395</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>2.403520</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>3.464366</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.906455</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>2.663061</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>2.061365</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>2.415295</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>1.865291</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>2.476184</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1.721946</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>4.111021</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>4.548765</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>5.017899</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>3.689172</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>5.908238</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>6.392085</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>5.155157</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>4.138337</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>2.654605</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>6.350224</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>5.476867</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.460600</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>7.377759</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>5.842796</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>7.192050</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>6.782474</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
<td>0</td>
<td>4.123915</td>
</tr>
<tr>
<td>35</td>
<td>19</td>
<td>0</td>
<td>7.020809</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>7.717740</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0</td>
<td>6.751110</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>5.654343</td>
</tr>
<tr>
<td>39</td>
<td>53</td>
<td>0</td>
<td>4.022230</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>6.766959</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>6.039323</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>6.461864</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>7.759463</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>8.155828</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>8.702963</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>8.158307</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>8.632387</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-4.167163</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.632667</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.863177</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-4.330525</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.611506</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-4.641142</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.834989</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-4.912442</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-2.223611</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-1.140130</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-2.672693</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-2.055246</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.685657</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.195425</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.753733</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-2.315342</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.788809</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.619514</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>-0.141316</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.237987</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.986684</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.242217</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.654692</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0.766838</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-0.497723</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-2.044979</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.729340</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>0.868464</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-1.169531</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.779893</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>1.265648</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>2.472308</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>2.099909</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
<td>0</td>
<td>-0.435796</td>
</tr>
<tr>
<td>35</td>
<td>19</td>
<td>0</td>
<td>3.038496</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>3.749091</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0</td>
<td>2.574258</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>1.654811</td>
</tr>
<tr>
<td>39</td>
<td>53</td>
<td>0</td>
<td>-0.186318</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>2.047323</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>1.455285</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>1.391302</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>2.881909</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>3.522527</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>3.976404</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>3.661603</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.050451</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.54351</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.056156</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.416134</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.647275</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.208355</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.183168</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.794906</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.062916</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.017667</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.221218</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.421724</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.190206</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.720331</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.541124</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.027039</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.027150</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.081203</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.413968</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.652485</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.318934</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.689751</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.945465</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>0.181587</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-1.298275</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.192683</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.446118</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-0.403069</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.164020</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1.851807</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.653151</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.421348</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>-0.131650</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.736446</td>
</tr>
<tr>
<td></td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.406116 -3.390110 -0.842922</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>3.648735 -3.311247 -2.456902</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>4.136962 -1.810364 -1.628479</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>-1.338760 3.160825 0.141885</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>-0.695356 3.163175 -1.740565</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-1.661703 3.236825 -2.735295</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.674823 3.072683 -2.002188</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.249572 3.223944 -4.070358</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>1.050046 3.058831 -3.353524</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>0.107215 3.133593 -4.378837</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-1.993343 3.281096 -4.859858</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>2.107547 2.985744 -3.595263</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>0.432605 3.118840 -5.414932</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.729994 3.012560 -0.913887</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>2.719901 3.133096 -1.370704</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0</td>
<td>1.582597 3.843890 -0.216571</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>-2.713083 3.301290 -2.478091</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
<td>0</td>
<td>1.708547 1.826765 -0.127474</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>2.168824 1.053781 -0.580368</td>
</tr>
</tbody>
</table>

TS_{GH}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atomic Number</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atomic Type</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.690517 -2.297742 1.183567</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.174920 -2.392064 0.891868</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.507181 -0.159680 1.093279</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.929808 -0.757620 1.299066</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.295569 -2.763720 0.396959</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.932315 -2.806591 2.123660</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.645264 -0.380935 0.559771</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-4.315150 -0.487448 2.289239</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.625038 -1.238559 1.755422</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.552757 -1.063252 1.622263</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.834193 -1.374051 2.823211</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.940610 -1.863356 -0.566083</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.705082 -2.289482 -1.232282</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.147161 -0.318942 -0.397137</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.918006 0.080765 -1.062435</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.743351 -3.378949 1.078054</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.408991</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.578051</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>-0.161802</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.263088</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-1.009361</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.152065</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.605207</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.584242</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-2.018477</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>1.577818</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>0.718632</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-1.256493</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>2.577087</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1.066167</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.424890</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>1.998856</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>-0.457540</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.359019</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>3.909863</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>3.334364</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>3.848532</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>-1.641354</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>-1.032076</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-2.126678</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.192580</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.972171</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>0.311865</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-0.756760</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-2.814125</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>1.265797</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-0.640199</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.335673</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>2.265401</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0</td>
<td>1.129144</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>-3.075005</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
<td>0</td>
<td>1.505334</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>1.974469</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.174281</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.670505</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.880979</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.328141</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.813745</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.427493</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.044405</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.659950</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.041997</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0.037610</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-3.813745</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.670505</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.199748</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.596057</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-3.542226</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.286342</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-1.727882</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.063013</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.304991</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.855094</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.602121</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.632059</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.189237</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.221722</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-1.622180</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.011835</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.095020</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-0.939087</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.019777</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1.407601</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>3.049691</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.537891</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>0.138365</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.914561</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.386510</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>3.929295</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>4.454527</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>-0.891165</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>-0.131581</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-1.087000</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.761260</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.182222</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.123017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.105514</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.400610</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.612909</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.105091</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.073761</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.998057</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.062067</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.593567</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.404423</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.601628</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.704375</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.731849</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.498937</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.577903</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.318842</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.732258</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.277963</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.125895</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.153650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.012760</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.800147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.464472</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.716930</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.080753</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.074081</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.084166</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.014271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.851394</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.971850</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.270250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.369042</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.122496</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.443968</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.363484</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.688071</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.248727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.699432</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.017743</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.641605</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.133495</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.100947</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.380338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.670129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.501224</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.144815</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3.090435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.102293</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-1.928070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.017447</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.107883</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.107277</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.639052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.045560</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.261660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.988439</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.323264</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.760756</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.592230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.212222</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.653433</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.067632</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.295375</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.577927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3.242035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.793551</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.155813</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.873988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.574837</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.290235</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-5.339728</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.703458</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.726060</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.426145</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.844393</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.330580</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.070032</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-4.530024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3.453173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3.929793</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.864855</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.542431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.438724</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.962698</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.869698</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.542431</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.078801</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.183143</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.864855</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.458995</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.030073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.544589</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.679723</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.090316</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.807573</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.015109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.461932</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.032516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.359545</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.694890</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.066245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.315830</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.143028</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.667441</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.515958</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.964174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.845326</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.515562</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.782602</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.222300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.478353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.009283</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.897322</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.290690</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.556107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.379453</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.300746</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-2.250381</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.158001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.797774</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.249106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.564127</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.811738</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.320711</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.708040</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-4.074526</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.979250</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-4.455915</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.368474</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-4.865302</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-2.274076</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-1.288694</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-2.995224</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.546325</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-1.673029</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.757575</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-1.852979</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-2.032024</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.745281</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.466358</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>1.007692</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.825639</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0.715094</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.906283</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.840392</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>1.244181</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.069258</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.428573</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>2.097854</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>1.000458</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.105827</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.518190</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.281863</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-4.642080</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-3.253064</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-3.751953</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-4.985335</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.595732</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-5.378458</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-5.126949</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-5.899063</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-3.452580</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-2.566875</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-4.292778</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-2.288323</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-1.785855</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.589729</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.369934</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-2.964913</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-3.906325</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.522238</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>1.088254</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.742018</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0.997579</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.796723</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.500980</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>1.548513</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.507234</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.340943</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>2.212885</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>1.473700</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>2.876263</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.647840</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>1.713404</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>1.948277</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>-0.674403</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>2.681355</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>3.717727</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.200304</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>2.667013</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>1.167686</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>0.252113</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-1.030658</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>1.077177</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.533302</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>0.556380</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-0.739127</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-2.530622</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>1.189896</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-1.113103</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>2.509751</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>2.971585</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0</td>
<td>2.528002</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>-1.633621</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
<td>0</td>
<td>3.296623</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>2.989025</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.373471</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.075318</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.501809</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.087227</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.004588</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.428273</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.314534</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.844675</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.765201</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.371391</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.231529</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.467447</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.534154</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.430263</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.127630</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>0.600344</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.058122</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.542076</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.515895</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.829668</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>2.686334</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-1.875051</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.820893</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-2.287007</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.133908</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.602409</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-2.522670</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.074893</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-2.921217</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-2.767268</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>-2.426635</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-3.037292</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>-2.884074</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>-1.525520</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0</td>
<td>-1.151335</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>-0.688333</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0</td>
<td>1.821279</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>1.174686</td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td>0</td>
<td>1.767210</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1.924317</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2.251275</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.782181</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>3.429720</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1.321747</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-0.141835</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>3.675372</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>4.176939</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.583993</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>2.737142</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>4.601840</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0.886118</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>2.916257</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-1.156131</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>0.181747</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>2.966333</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-0.748146</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-0.238449</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-1.179737</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-1.538732</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>4.993647</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>0.399520</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>0.342719</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>0.106479</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>0.033675</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-0.202490</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-0.234734</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0.004508</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-0.423999</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-0.471940</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstoms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.324643</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.021769</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.548699</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.243848</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.060860</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.600111</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.477453</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2.052988</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.810205</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.435952</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.466689</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.590909</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.602877</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.700376</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.293718</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>0.978722</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.347224</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-3.011290</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.635214</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-4.200875</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>2.687518</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.433591</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.248190</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.557861</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.903357</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.286585</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.620410</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.033202</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.714363</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.145134</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-0.002376</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.935175</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.928138</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.083815</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.639752</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.419387</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>1.105245</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.479416</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-3.091752</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.899180</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-4.252732</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>3.736816</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-1.808321</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-2.139855</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-1.731756</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.365254</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-1.969044</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-2.280978</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.612064</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-1.897363</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-2.459712</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>-1.363063</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-1.679343</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>-1.897970</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>-2.227594</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0</td>
<td>0.045570</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0.578777</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0</td>
<td>1.516782</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>0.784295</td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td>0</td>
<td>1.930913</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>1.807664</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>0.875020</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>2.340488</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>2.416306</td>
</tr>
<tr>
<td>44</td>
<td>19</td>
<td>0</td>
<td>2.163538</td>
</tr>
</tbody>
</table>

N

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.458709</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.291300</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.573444</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.833540</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.310860</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.633875</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0.962851</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.619108</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.170989</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-0.049549</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.842416</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.940022</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.035343</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.652053</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.427219</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>1.135299</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.471198</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-3.058009</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.917847</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-4.230856</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>3.753515</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-1.803971</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-2.161779</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-1.676901</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.368565</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-1.900156</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-2.240301</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.635704</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-1.792248</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-2.405956</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>-1.277334</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-1.576492</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>-1.789245</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>-2.285316</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0</td>
<td>0.135574</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0.667358</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0</td>
<td>1.492415</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>0.861231</td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td>0</td>
<td>1.827933</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>1.774124</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>0.856813</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>2.193046</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>2.484375</td>
</tr>
<tr>
<td>44</td>
<td>19</td>
<td>0</td>
<td>2.177735</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Atomic Number</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.244378</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.124922</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.507128</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.399318</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.844758</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.513744</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.726247</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2.120760</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.500772</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.767936</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.712630</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.226268</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.008022</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.649769</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.111665</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>1.140469</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.117222</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.785199</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.311438</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-4.026086</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-1.949733</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-2.556889</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.765356</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-2.945152</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.168255</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.749707</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-3.406863</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.024920</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-3.055299</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>0</td>
<td>-1.129432</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>-1.361940</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-1.584436</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>0</td>
<td>-2.735685</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>0</td>
<td>0.273307</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>1.954731</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>2.389077</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>0.891305</td>
</tr>
<tr>
<td>38</td>
<td>7</td>
<td>0</td>
<td>2.724011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>2.156918</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>2.337104</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>2.610841</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>1.079314</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>4.161273</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>0</td>
<td>4.431552</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>4.706466</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>4.430538</td>
</tr>
</tbody>
</table>

TSop

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.510003</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.265291</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.635788</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.817880</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.168255</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.532994</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.024327</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.484838</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.940873</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.138582</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.862150</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.612051</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.288179</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.494290</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.244597</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>1.069206</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.158670</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.626633</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.639679</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.913891</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-1.942575</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-2.445175</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.696238</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-2.667075</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-1.914851</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.394004</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-3.055856</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.412937</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.171385</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.390169</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.739299</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.897697</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.130702</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0.966404</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.260861</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.653271</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.269679</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.677055</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.186914</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.437610</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-2.992327</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-1.843767</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>0.588525</td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.187031</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.523245</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.032711</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-1.743901</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-2.613825</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-1.124640</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>-3.022913</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-0.887123</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-3.904396</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-4.102623</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-3.180116</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-4.757531</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-5.109665</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-1.018161</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.391410</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>-0.149117</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.423519</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>1.135727</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.696420</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>0</td>
<td>-0.778513</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.559488</td>
</tr>
</tbody>
</table>

DMF
NBE

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.108665 -0.608299 -0.009282</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1.459680 -0.582058 -0.008525</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.922882 1.610256 -0.008753</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-0.480307 0.908422 -0.008581</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-0.506924 -1.144028 -0.876096</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-0.483475 -1.109290 0.890770</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-1.082130 1.199847 -0.874602</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-1.043479 1.178796 0.892176</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.716815 0.642824 0.901884</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>2.777307 0.902467 0.978153</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.288711 0.538293 1.906943</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>1.876843 -0.008194 -1.355811</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>1.557566 1.293665 -1.356022</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1.925586 -1.527502 0.280588</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0.899002 2.664058 0.280114</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1.615483 1.985597 -2.190901</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>2.247790 -0.595257 -2.190620</td>
</tr>
</tbody>
</table>

KOAc

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.573070 0.171577 -0.038078</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.693812 0.197059 0.021994</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-1.330597 1.188372 -0.068806</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>0</td>
<td>0.682624 2.744457 -0.003402</td>
</tr>
</tbody>
</table>
3q

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.231786</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1.161762</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.864056</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.208802</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.189146</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-0.916465</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-0.793343</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.700274</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>2.950643</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-1.999739</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>2.017122</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>3.016311</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.537862</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>2.109424</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>2.334608</td>
</tr>
<tr>
<td>16</td>
<td>35</td>
<td>0</td>
<td>-1.225558</td>
</tr>
</tbody>
</table>

AcOH•KI

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.007606</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>0</td>
<td>3.212754</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>3.823832</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2.637552</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0</td>
<td>1.950279</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>0</td>
<td>-0.036689</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.848524</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.368230</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>0</td>
<td>2.104766</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1.738899</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.785427</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.140533</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1.546274</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0.530137</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1.694306</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2.234895</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>2.739603</td>
</tr>
</tbody>
</table>

AcOH•KBr

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-2.378850</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.966489</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.269649</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.291325</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-2.684345</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-2.393365</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.042814</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.830070</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.048727</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.183560</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.252969</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.011289</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-1.506742</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.779214</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.572247</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-0.148932</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.632347</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.287789</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.476763</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>1.342162</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.514769</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.709708</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.644262</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>0.287789</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-0.323741</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>1.342162</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>0.287789</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>0.885742</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-1.114944</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.815986</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>1.052211</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>3.617355</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>2.732900</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>0</td>
<td>-0.192053</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0</td>
<td>1.034124</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>0</td>
<td>-0.002039</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>-1.119815</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>0.009214</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>3.964359</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>4.498030</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>3.742665</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>4.584510</td>
</tr>
</tbody>
</table>

TS\text{ab}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.618578</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2.081934</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.055307</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-0.096845</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.174664</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0.568839</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-0.919548</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-0.519465</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>2.248579</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>3.198344</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.097341</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>2.111867</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.477084</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>1.406663</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0.522666</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>2.808348</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.853919</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>3.480227</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>4.012547</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>4.200243</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>3.366456</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>5.278743</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>5.388203</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>4.293974</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>3.922531</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>2.408869</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>5.832828</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>5.163090</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.395231</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>6.792525</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>5.614014</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>5.920587</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>5.938542</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
<td>0</td>
<td>2.524164</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0</td>
<td>4.574433</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>0</td>
<td>3.817868</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>2.698278</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>4.084648</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>7.200231</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>7.961076</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>7.079856</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>7.511139</td>
</tr>
</tbody>
</table>

b

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-2.762462</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.286289</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.691245</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.051496</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.431744</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-2.878413</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-3.863378</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.332665</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.694909</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0.343291</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-0.773479</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.234146</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.048817</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.495595</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.360938</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-0.796436</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-1.586342</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.076611</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.571167</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.780601</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.149884</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.842339</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.080772</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0.306739</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>0.347515</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-1.124708</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>2.340450</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>1.602105</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-0.235306</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>3.306783</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>2.008865</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>2.759933</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>0</td>
<td>2.567373</td>
</tr>
<tr>
<td>34</td>
<td>46</td>
<td>0</td>
<td>0.009956</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0</td>
<td>-0.056751</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>0</td>
<td>-0.719579</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>-0.741473</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>0</td>
<td>-1.206497</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>3.873824</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>4.568533</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>3.797128</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>4.242968</td>
</tr>
</tbody>
</table>

sG
<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.141387</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.625624</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.251029</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.584284</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.677598</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.316260</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.334545</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-4.015838</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.238246</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.201004</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.433628</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.846033</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.172982</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.847429</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.660190</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.069615</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.288644</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.081730</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.510461</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.596200</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.165521</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.825876</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.939919</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>0.426463</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-1.174430</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.421602</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.728384</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-0.116249</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.424180</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.205456</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.617600</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.505920</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>-0.319612</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.866058</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.526576</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>3.874373</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>4.212161</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>-1.558979</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>-0.968458</td>
</tr>
</tbody>
</table>

S59
<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-2.025287</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.380880</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.758852</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>0.597344</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-0.437953</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-2.579000</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>-1.613062</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-0.204638</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.584681</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-3.045505</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0</td>
<td>1.418885</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>-4.333886</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>0</td>
<td>1.639906</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>2.560229</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>0</td>
<td>1.827850</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0</td>
<td>0.807820</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>0</td>
<td>2.918859</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0</td>
<td>3.194379</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>0</td>
<td>3.701006</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>0</td>
<td>2.895785</td>
</tr>
</tbody>
</table>

TS\textsubscript{GH}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.776913</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.247643</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.638596</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-4.054148</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.333886</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-4.052406</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.749721</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-4.482127</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.762301</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.689713</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-2.015301</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.953941</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.665973</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.216372</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.983530</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.804608</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.577729</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.551079</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>-0.054381</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.253524</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.866400</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.305829</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>0.551079</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.054381</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-1.910207</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>1.810119</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>0.983165</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-1.010790</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>2.845402</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1.391017</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.451393</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.121031</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>-0.569203</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.533845</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.034234</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>3.634741</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>3.987664</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>-1.808978</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>-1.225970</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-2.391975</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>-0.034694</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-2.378225</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>-0.073756</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-1.217794</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-3.280476</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>0.826462</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-1.197793</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.252738</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-3.296613</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0</td>
<td>1.292977</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>1.850903</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>0</td>
<td>1.266127</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>2.194444</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>0</td>
<td>1.212114</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0</td>
<td>0.424765</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>0</td>
<td>2.521537</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0</td>
<td>2.627026</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>0</td>
<td>3.392421</td>
</tr>
</tbody>
</table>

S61
<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.301856</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.791968</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.005634</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.454289</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.925419</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.577357</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.168553</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.786418</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.176043</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.094811</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.385153</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.515319</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.251868</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.720588</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.501148</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.414171</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-1.855199</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-0.119006</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.311157</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.753687</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.570358</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.674031</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.155604</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.132374</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-1.616673</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.112184</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.218119</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-0.831164</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.148057</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1.575424</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>3.014439</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.558800</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>-0.035301</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.978355</td>
</tr>
</tbody>
</table>
TSPolit

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.220868</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-1.703880</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.135140</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.533537</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.802967</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-3.427631</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.242499</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-3.960245</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.212924</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-0.148246</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-1.423150</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.514703</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.301174</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.739891</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.477156</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-1.220411</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-2.093662</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>-1.514703</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.235943</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.696348</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-0.670103</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.569186</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>2.113046</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.281949</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-1.698210</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>1.959347</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.042599</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-1.001435</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>2.974189</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>1.359962</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>3.003122</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.477839</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>0.004356</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.894097</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.269235</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>4.026400</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>4.439756</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>0.725958</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>0.055068</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-0.961152</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.830645</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.190000</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>0.595929</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-0.387653</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-1.977730</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>1.182697</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-0.535405</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.779502</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-1.562346</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0</td>
<td>1.925974</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>2.505945</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>0</td>
<td>1.153487</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>1.822461</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.818014</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.502048</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.027694</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-3.495228</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.110410</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-4.635745</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-3.602980</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-2.028547</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.037406</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-2.744410</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>-1.478885</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.962954</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>-1.191322</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.281684</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>-2.670598</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>-1.704503</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-0.040910</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.518384</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.712945</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>-0.138936</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>1.787068</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>2.068307</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>0.391496</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-1.080775</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>2.315901</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>1.625558</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-0.155347</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>0</td>
<td>3.275786</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.055656</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.776200</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.528844</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>0.853208</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.864255</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.513889</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>3.802554</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>4.265459</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>1.225306</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>0.077937</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-0.852692</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.357531</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.565214</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>-0.403289</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-1.353524</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-2.272583</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>-0.233583</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-1.906793</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.447398</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-1.011955</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0</td>
<td>2.285976</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>2.746587</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>0</td>
<td>0.819828</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>1.615439</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>0</td>
<td>0.162567</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0</td>
<td>0.243909</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>0</td>
<td>2.377151</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0</td>
<td>1.857764</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>0</td>
<td>3.179912</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>0</td>
<td>2.821305</td>
</tr>
</tbody>
</table>

TS_{aji}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-3.908301</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.425023</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-2.949982</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-4.265669</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.022338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-4.536971</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-4.560734</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-5.087669</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-2.474614</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-1.514633</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-3.205403</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.659589</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-1.739864</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.957550</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.067928</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-2.086015</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-3.056736</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.389958</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>0.936040</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.817537</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0.595964</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.877214</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.928068</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>1.110487</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>-0.076503</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.380250</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>1.996779</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0.828444</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.086666</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.403432</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.500064</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.322304</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td>0.046351</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.350362</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.269560</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.993416</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>3.552464</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>0.167078</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>0.171821</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-0.958419</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.610388</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.718702</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>-0.189171</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-1.342719</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-2.586054</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>0.113120</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-1.925078</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>1.945108</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-4.783460</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-3.324179</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-3.806714</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-5.117854</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-4.848019</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-5.457608</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-5.371160</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>-5.958688</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-3.402248</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-2.451655</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>-4.168839</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-2.467899</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>-2.056789</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-2.771333</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-2.633521</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-2.999940</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-3.919830</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>0</td>
<td>0.518219</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>1.053451</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0.863929</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>0.728154</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>1.941736</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>1.871207</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>1.232581</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.079048</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>2.444842</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>2.090894</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>0.968967</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>3.120505</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>2.494354</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>0</td>
<td>2.317761</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>0</td>
<td>2.319187</td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>3.289519</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>4.236145</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.901408</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>3.450529</td>
</tr>
<tr>
<td>38</td>
<td>35</td>
<td>0</td>
<td>1.153945</td>
</tr>
<tr>
<td>39</td>
<td>6</td>
<td>0</td>
<td>0.187669</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>0</td>
<td>-1.040968</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>0.683985</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-1.829185</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>-0.151597</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>0</td>
<td>-1.390034</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-2.767455</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>0.190442</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-1.990956</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>0</td>
<td>2.092696</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-1.367518</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>0</td>
<td>2.923229</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>3.045992</td>
</tr>
<tr>
<td>52</td>
<td>6</td>
<td>0</td>
<td>2.013296</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>3.020530</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>0</td>
<td>1.388820</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0</td>
<td>1.601170</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>0</td>
<td>2.790673</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>0</td>
<td>2.296463</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>0</td>
<td>3.815675</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>0</td>
<td>2.827782</td>
</tr>
</tbody>
</table>

\(\text{sK}\)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.147077</td>
<td>-0.868026</td>
<td>-0.546243</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.221941</td>
<td>-2.256429</td>
<td>-0.344992</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.311652</td>
<td>-0.546628</td>
<td>-1.178439</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.407536</td>
<td>-2.651035</td>
<td>0.315073</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.664987</td>
<td>-3.272772</td>
<td>-0.806949</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.203257</td>
<td>-1.581398</td>
<td>-1.725331</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.702826</td>
<td>-3.976444</td>
<td>0.552492</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2.122871</td>
<td>-1.875135</td>
<td>0.572723</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.352160</td>
<td>-4.626923</td>
<td>-0.560665</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.809411</td>
<td>-4.975176</td>
<td>0.116038</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.634192</td>
<td>-4.262985</td>
<td>1.039352</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.017493</td>
<td>-5.409736</td>
<td>-0.902859</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.028489</td>
<td>-6.025662</td>
<td>0.287413</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.243385</td>
<td>-1.326392</td>
<td>-2.331085</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-1.820448</td>
<td>-2.91236</td>
<td>-1.490681</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>0.743927</td>
<td>0.643716</td>
<td>0.355315</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-2.704944</td>
<td>-3.957124</td>
<td>-2.019610</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.162927</td>
<td>-4.605043</td>
<td>-2.716208</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.118252</td>
<td>-4.567862</td>
<td>-1.209107</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.513642</td>
<td>-3.450087</td>
<td>-2.541960</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>2.892566</td>
<td>0.387400</td>
<td>-0.899616</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-1.733775</td>
<td>0.873736</td>
<td>-1.422845</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.656346</td>
<td>1.306384</td>
<td>-2.755351</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-2.177249</td>
<td>1.782817</td>
<td>-0.425676</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-1.982498</td>
<td>2.606229</td>
<td>-3.128470</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.502773</td>
<td>3.088796</td>
<td>-0.827480</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-2.407396</td>
<td>3.504673</td>
<td>-2.154013</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-1.903479</td>
<td>2.910420</td>
<td>-4.168317</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-2.843351</td>
<td>3.810867</td>
<td>-0.095606</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-2.665953</td>
<td>4.526675</td>
<td>-2.416940</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>-2.352815</td>
<td>1.386822</td>
<td>1.054212</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-1.326170</td>
<td>0.596760</td>
<td>-3.507275</td>
</tr>
<tr>
<td>33</td>
<td>8</td>
<td>0</td>
<td>-1.062170</td>
<td>0.954874</td>
<td>1.635778</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>-0.515933</td>
<td>1.746979</td>
<td>1.918741</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>1.830848</td>
<td>2.077902</td>
<td>2.857569</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>1.137039</td>
<td>2.355381</td>
<td>1.797180</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>1.648034</td>
<td>1.078114</td>
<td>3.583802</td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>0</td>
<td>2.933555</td>
<td>3.070344</td>
<td>3.189251</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>2.542183</td>
<td>4.092315</td>
<td>3.166800</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>3.376807</td>
<td>2.855153</td>
<td>4.163853</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>3.705079</td>
<td>3.005653</td>
<td>2.413120</td>
</tr>
<tr>
<td>42</td>
<td>19</td>
<td>0</td>
<td>0.356879</td>
<td>-1.063710</td>
<td>3.046024</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>-2.836975</td>
<td>2.532624</td>
<td>1.955151</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1.940378</td>
<td>-0.489798</td>
<td>-1.345961</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2.354810</td>
<td>-1.854383</td>
<td>-1.099895</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.751715</td>
<td>-0.199453</td>
<td>-1.939729</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>3.574950</td>
<td>-2.196526</td>
<td>-0.474802</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1.470336</td>
<td>-2.903546</td>
<td>-1.489083</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-0.135811</td>
<td>-1.277137</td>
<td>-2.414089</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>3.906469</td>
<td>-3.516890</td>
<td>-0.198479</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>4.277929</td>
<td>-1.395058</td>
<td>-0.265758</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.822734</td>
<td>-4.240406</td>
<td>-1.204469</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>3.017494</td>
<td>-4.538061</td>
<td>-0.561911</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>4.860610</td>
<td>-3.754456</td>
<td>0.262978</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1.162303</td>
<td>-5.049284</td>
<td>-1.490753</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>3.265959</td>
<td>-5.576382</td>
<td>-0.359860</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-1.199825</td>
<td>-1.068814</td>
<td>-2.992319</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>0.283239</td>
<td>-2.597404</td>
<td>-2.139036</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>2.902455</td>
<td>1.048924</td>
<td>-0.597462</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-0.601052</td>
<td>-3.672356</td>
<td>-2.590347</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-0.074966</td>
<td>-4.336044</td>
<td>-3.284119</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-0.967287</td>
<td>-4.258244</td>
<td>-1.739940</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-1.441128</td>
<td>-3.202200</td>
<td>-3.097202</td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>4.961209</td>
<td>0.835553</td>
<td>-1.984864</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>0.296636</td>
<td>1.203520</td>
<td>-2.204904</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>0.226425</td>
<td>1.578629</td>
<td>-3.554961</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-0.030046</td>
<td>2.151214</td>
<td>-1.199806</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-0.133971</td>
<td>2.866019</td>
<td>-3.940330</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-0.391820</td>
<td>3.442556</td>
<td>-1.615021</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-0.441374</td>
<td>3.805290</td>
<td>-2.960193</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-0.170685</td>
<td>3.128856</td>
<td>-4.993706</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>1.898679</td>
<td>-0.478865</td>
<td>-1.540400</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2.363777</td>
<td>-1.822886</td>
<td>-1.268490</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.652844</td>
<td>-0.238179</td>
<td>-2.032296</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>3.648407</td>
<td>-2.110373</td>
<td>-0.754134</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1.469192</td>
<td>-2.906589</td>
<td>-1.514906</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-0.256243</td>
<td>-1.355940</td>
<td>-2.353913</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>4.035965</td>
<td>-3.408636</td>
<td>-0.448830</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>4.344903</td>
<td>-1.284053</td>
<td>-0.645104</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.878580</td>
<td>-4.220831</td>
<td>-1.201574</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>3.139132</td>
<td>-4.463121</td>
<td>-0.670182</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>5.034904</td>
<td>-3.604144</td>
<td>-0.070343</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1.211709</td>
<td>-5.055142</td>
<td>-1.379503</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>3.430523</td>
<td>-5.484950</td>
<td>-0.442876</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X Y Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-1.379026 -1.200010 -2.827583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>0.216030 -2.653607 -2.053982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>2.948901 1.107395 -1.047478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-0.685696 -3.765132 -2.357958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-0.216700 -4.457159 -3.064864</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-0.953897 -4.310338 -1.445943</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-1.581361 -3.336200 -2.802184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td>4.875921 0.847315 -2.616480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>0.158016 1.138697 -2.347590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-0.125058 1.392263 -3.698685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>0.006975 2.177460 -1.392786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-0.526293 2.649325 -4.139232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-0.401942 3.435101 -1.864456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-0.660335 3.679230 -3.212816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-0.727500 2.818528 -5.193305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-0.527931 4.255538 -1.169033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-0.968383 4.672064 -3.529829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>0.213823 1.954310 0.124729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-0.017428 0.581708 -4.411694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8</td>
<td>0</td>
<td>1.537347 1.486758 0.436049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>2.420300 2.331807 1.403519</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>3.584932 2.175643 2.975551</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>3.084698 2.877981 1.976067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>3.295487 1.001100 3.209971</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>0</td>
<td>4.569167 2.959901 3.811064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>4.117687 3.901586 4.138629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>4.883354 2.370885 4.673565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>5.442416 3.215563 3.200749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>19</td>
<td>0</td>
<td>2.083252 -0.767529 1.738493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>0</td>
<td>0.002833 3.240569 0.948380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>0</td>
<td>-1.017733 3.627287 0.860454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>0.182054 3.014625 2.004863</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>0.705994 4.024188 0.651095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>6</td>
<td>0</td>
<td>-0.811980 0.909578 0.633389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0</td>
<td>-0.687804 0.766840 1.716929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-1.840199 1.245502 0.460869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0</td>
<td>-0.692801 -0.052624 0.127693</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{sN} \]
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.483103</td>
<td>-1.342546</td>
<td>-0.324494</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.264739</td>
<td>-2.768517</td>
<td>-0.479773</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.522519</td>
<td>-0.699728</td>
<td>-0.921500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.785869</td>
<td>-3.463783</td>
<td>0.160506</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.135462</td>
<td>-3.497556</td>
<td>-1.335514</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.477596</td>
<td>-1.474977</td>
<td>-1.755388</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0.993439</td>
<td>-4.819430</td>
<td>-0.045001</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.448696</td>
<td>-2.925664</td>
<td>0.835589</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.917538</td>
<td>-4.875804</td>
<td>-1.533445</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.135889</td>
<td>-5.521948</td>
<td>-0.899645</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.812586</td>
<td>-5.326637</td>
<td>0.455267</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.573833</td>
<td>-5.443328</td>
<td>-2.180161</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.285046</td>
<td>-6.584717</td>
<td>-1.069675</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.476283</td>
<td>-0.975274</td>
<td>-2.270638</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.195909</td>
<td>-2.840194</td>
<td>-1.944560</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.117012</td>
<td>-3.588726</td>
<td>-2.800022</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.578700</td>
<td>-4.033685</td>
<td>-3.643353</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.613900</td>
<td>-4.382900</td>
<td>-2.232189</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.860011</td>
<td>-2.884114</td>
<td>-3.166596</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-1.801776</td>
<td>0.765245</td>
<td>-0.834615</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.970733</td>
<td>1.442193</td>
<td>-2.055903</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-1.929509</td>
<td>1.490302</td>
<td>0.376018</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.262002</td>
<td>2.800135</td>
<td>-2.111314</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.241541</td>
<td>2.856820</td>
<td>0.293989</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>0</td>
<td>-2.412201</td>
<td>3.510950</td>
<td>-0.923554</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.381246</td>
<td>3.291393</td>
<td>-3.073063</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-2.355338</td>
<td>3.437518</td>
<td>1.201194</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-2.656319</td>
<td>4.569943</td>
<td>-0.937934</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>-1.644757</td>
<td>0.848161</td>
<td>1.748112</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
<td>-1.881236</td>
<td>0.879914</td>
<td>-2.978260</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>8</td>
<td>0</td>
<td>-0.218361</td>
<td>0.670600</td>
<td>1.871160</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0.517804</td>
<td>2.146131</td>
<td>1.501690</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>1.579063</td>
<td>3.563093</td>
<td>2.299506</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>0.982307</td>
<td>3.011202</td>
<td>1.255314</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>0</td>
<td>1.539287</td>
<td>3.099819</td>
<td>3.438315</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>0</td>
<td>2.335601</td>
<td>4.818894</td>
<td>1.942077</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>1.741593</td>
<td>5.449047</td>
<td>1.274426</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>2.604857</td>
<td>5.363749</td>
<td>2.847931</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0</td>
<td>3.248687</td>
<td>4.539430</td>
<td>1.403677</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S74
<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.127843</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.236186</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.391580</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.521535</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.751277</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.423103</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.841384</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2.257761</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.413440</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.865777</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.836372</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.151442</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.101146</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.573121</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.028786</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>1.213423</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-3.054853</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.762930</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.217741</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.970231</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-1.803074</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-2.353360</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.638989</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-2.720703</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.026565</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.553173</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-3.138171</td>
</tr>
</tbody>
</table>
TS_{SOP}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.335403</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.069663</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.460498</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.022595</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.960329</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.352747</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.247852</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.682807</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.713068</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.373695</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>2.092230</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.374273</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.538756</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.330307</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-2.043838</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>-3.330307</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-2.946948</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-2.407789</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.417464</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.711433</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-1.789177</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-2.946948</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.567420</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-2.559772</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-1.840537</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.325222</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-2.949871</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-1.684975</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-2.526475</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>0</td>
<td>-1.153677</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>-2.496814</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>-0.120409</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>1.923954</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>0</td>
<td>2.442710</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0.877089</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>0</td>
<td>2.574679</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>0</td>
<td>1.911818</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>1.916319</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>2.424299</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>0.876159</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>3.970517</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>0</td>
<td>4.315140</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>4.583825</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>0</td>
<td>4.065867</td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>0</td>
<td>-0.601422</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>-1.371180</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-0.213074</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0</td>
<td>0.220214</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>0</td>
<td>-2.371616</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0</td>
<td>-3.181292</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>-2.753151</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>0</td>
<td>-2.074467</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.582087</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.315952</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.529262</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.576492</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-1.000333</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-2.232808</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0.826604</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.067391</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-0.733395</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.171331</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1.523560</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>-1.234912</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0.357760</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-3.080316</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0</td>
<td>-1.929010</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>0</td>
<td>0.473241</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-2.626225</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-1.915199</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-3.192821</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-3.308791</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-2.037370</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-2.722033</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-1.804983</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-3.171370</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-2.260473</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>0</td>
<td>-2.941358</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-3.703037</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-2.091068</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-3.288758</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>0</td>
<td>-1.129754</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>0</td>
<td>-2.907812</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>0</td>
<td>-0.167324</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>1.874755</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>0</td>
<td>2.034443</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>0</td>
<td>0.874577</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>0</td>
<td>2.883038</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Angstroms)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.309481</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1.013255</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.740379</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.201947</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.136229</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>-0.888785</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-0.891623</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1.487316</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>2.768504</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>-1.917084</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>2.068667</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0</td>
<td>2.057188</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1.161123</td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>0</td>
<td>-1.155301</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>1.578712</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1.663604</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.535221</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>2.194413</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>0</td>
<td>3.558763</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>4.102053</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>3.940392</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>3.759613</td>
</tr>
</tbody>
</table>
8. NMR Charts
Data for Scheme 5

Recovered 2a-\(d_1\) 51\%D