Supporting information

Highly active, durable and pH-universal hybrid oxide nanocrystals for efficient oxygen evolution

Yahia H. Ahmad^{a+}, Kamel A. Eid^{a+}, Siham Y. AlQaradawi^a and Nageh K. Allam^{b*}

^{a.} Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar ^{b.} Energy Materials Lab (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt *Corresponding author E-mail: <u>nageh.allam@aucegypt.edu</u>

+ contributed equally to the work.

Figure S1. Tafel plot of the as-synthesized nanocatalysts relative to commercial Pt/C measured in (A) 1 M KOH, (b) PBS (pH 7.4), and (c) $0.5 H_2SO_4$.

Figure S2. Chronoamperometric tests of the as-synthesized nanocatalysts relative to commercial Pt/C measured for 5 h in (A) 1 M KOH at 1.6 V, (b) PBS (pH 7.4) at 1.82 V, and (c) 0.5 H₂SO₄ at 1.8 V vs. RHE.

Figure S3. (a) XRD of NiMnO₃ and (b) of Pt1-NiMnO₃ before and after accelerated durability test for 5 hours in 1M KOH.

Figure S4. The amount of O₂ calculated theoretically (black-line) and measured experimentally by time on Pt1-NiMnO₃ (blue) and NiMnO₃ (red) in 1 M KOH.