Electronic Supplementary Information

Polyaniline coated Fe₃O₄ hollow nanospheres as anode materials

for lithium ion batteries

Xiaoliang Wang,^{‡a} Yanguo Liu,^{‡b} Hongyan Han,^c Yanyan Zhao,^d Wuming Ma,^d and Hongyu Sun^{*d,e}

^a College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.

^b School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004,

PR China.

^c Hangzhou Branch of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,

Hangzhou 310018, PR China

^d National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

^e Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.

*Corresponding author. *E-mail address*: <u>hsun@nanotech.dtu.dk</u> (H. Sun)

Fig. S1 Thermal gravimetric analysis (TGA, black lines) and derivative thermogravimetric (DTG, red lines) plots of (a) *h*-Fe₃O₄@PANI composites and (b) the pure PANI measured by using TG 2050 thermogravimetric analyzer under an air atmosphere at the temperature range of 25-800 °C with a heating rate of 10 °C min⁻¹.

Fig. S2 Typical FESEM, TEM and HRTEM images of the *h*-Fe₃O₄ sample.

Fig. S3 EDX pattern of the *h*-Fe₃O₄@PANI sample.

Fig. S4 EDX pattern of the h-Fe₃O₄ sample.

Fig. S5 The elemental maps of Fe, O and N for (a) *h*-Fe₃O₄ and (b) *h*-Fe₃O₄@PANI samples.

Fig. S6 XPS survey spectrum of the *h*-Fe₃O₄ sample.

Fig. S7 (a) High-resolution XPS spectra of the Fe 2p region for the h-Fe₃O₄ (black) and h-Fe₃O₄@PANI (blue) samples.

Fig. S8 High-resolution XPS spectra of the O 1s region for the h-Fe₃O₄ (black) and h-Fe₃O₄@PANI (blue) samples.

Fig. S9 CVs of *h*-Fe₃O₄@PANI sample at a scan rate of 0.5 mVs⁻¹ between 0.05 and 3 V.

Fig. S10 CVs of *h*-Fe₃O₄ sample at a scan rate of 0.5 mVs⁻¹ between 0.05 and 3 V.

Fig. S11 Galvanostatic charge/discharge curves of h-Fe₃O₄ for the first three cycles between 0.05 V and 3.00 V (vs. Li⁺/Li) at a current density of 100 mAg⁻¹.

Fig. S12 (a) TEM image, (b) SAED pattern and (c, d) HRTEM images of the *h*-Fe₃O₄@PANI electrode after cycling performance testing (50 cycles, current rate 0.1 C, 0.01-3 V versus Li/Li⁺).

Table S1 Performance comparison of some LIE	anode materials based on typical Fe ₃ O ₄ structures
$(1 \text{ C} = 1000 \text{ mAg}^{-1})$	

	Voltage Window	Reversible Capacity(cycles)	Rate Capability	Ref
	/V (vs. Li+/Li)	/mAh g ⁻¹	/mAh g ⁻¹	
Fe ₃ O ₄ hollow microspheres	0.05 - 3.0	580@0.2 C (100)	40 @5C	1
Hollow ball-in-ball CoxFe3-xO4	0.005 - 3.0	650.2@1C (100)	201.6 @10C	2
Fe ₃ O ₄ microspheres	0.01 - 3.0	450 @0.2C (110)		3
Fe ₃ O ₄ nanocubes	0.001 - 3.0	221.9@0.2 C (60)	51 @5C	4
Fe ₃ O ₄ /Fe nanocomposites	0.05 - 3.0	390@0.2C (50)	260 @2C	5
porous Fe ₃ O ₄ thin films	0.01 - 3.0	366@0.1C (100)	120 @5C	6
mesoporous Fe ₃ O ₄ nanorods	0.05 - 3.0	825.4 @0.1C (50)	715.7 @1C	7
TiO_2 and Fe_3O_4 with graphene	0.01 - 3.0	703@0.5 C (200)	169 @8C	8
Fe ₃ O ₄ @C/CNT nanostructures	0.01 - 3.0	693@0.3 C (200)	282 @1.2C	9
Fe ₃ O ₄ /graphene sheet composites	0.01-3.0	1134 @0.1C	502 @5C	10
Fe ₃ O ₄ on aligned carbon nanotubes	0.1 - 3.0	1670 @0.1C	340 @9C	11
Fe ₃ O ₄ /Fe/Carbon composite	0.002 - 3.0	685 @0.05C	500 @0.5C	12
Fe ₃ O ₄ @polypyrrole nanocages	0.01-3.0	950 @0.2C	490 @5C	13
Porous Fe ₃ O ₄ /C microbelts	0.01 - 3.5	710@0.1 C (50)	184 @3C	14
Carbon-encapsulated Fe ₃ O ₄ nanoparticles	0.005 - 3.0	998@1 C (100)	576 @10C	15
Yolk-shelled Fe ₃ O ₄ @carbon	0.01 - 3.0	1012@0.1 C (70)	900 @5C	16
Fe ₃ O ₄ -carbon nanocomposites	0.005 - 3.0	1409@0.2C (100)	414@5C	17
Fe ₃ O ₄ nanoparticles in porous carbon	0.01-3.0	702@0.35C (50)		18
Nitrogen-doped carbon encapsulated Fe ₃ O ₄	0.005 - 3.0	848@0.1C (50)	360 @2C	19
Fe ₃ O ₄ /C composite beads	0.05 - 3.0	698.8@0.1C (50)	573.1 @0.5C	20
Fe ₃ O ₄ @carbon nanorods	0.01 - 3.0	808.2@1C (100)		21
Hierarchical hollow Fe ₃ O ₄ microspheres	0.01-3.0	851.9@1C (50)	654.5@5C	22
Hollow Fe ₃ O ₄ /C spheres	0.01-3.0	984@0.2C (70)	460 @5C	23
Fe ₃ O ₄ @C core-shell nanorings	0.01-3.0	923@0.2C (160)	632 @1C	24
C/ Fe ₃ O ₄ /C core-shell nanotubes	0.01-3.0	700@0.1C (120)		25

References:

- 1 B. Wang, H. Wu, L. Zhang, X. Lou, Angew. Chem. Int. Ed., 2013, 52, 4165.
- L. Shen, H. Song, G. Yang, C. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 11063.
- 3 W. Wang, J.-Y. Park, V. Nguyena, E. Jinc, H.-B. Gu, Ceram. Int., 2016, 42, 598.
- 4 H. Cao, R. Liang, D. Qian, J. Shao, M. Qu, J. Phys. Chem. C, 2011, 115, 24688.
- 5 M. Lübke, N.M. Makwana, R. Gruar, C. Tighe, D. Brett, P. Shearing, Z. Liu, J.A. Darr, J. *Power Sources*, 2015, 291, 102.
- 6 H. Cheng, Z. Lu, R. Ma, Y. Dong, H. Wang, L. Xi, L. Zheng, C. Tsang, H. Li, C. Chung, J. Zapien, Y. Li, *J. Mater. Chem.*, 2012, 22, 22692.

- 7 Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, *J. Mater. Chem.* 2012, 22, 20566.
- 8 L. Pan, X.-D. Zhu, X.-M. Xie, Y.-T. Liu, Adv. Funct. Mater., 2015, 25, 3341.
- 9 J. Liu, Y. Ni, H. Wang, L. Gao, J. Mater. Chem. A., 2013, 1, 12879.
- 10 X. Meng, Y. Xu, X. Sun, J. Wang, L. Xiong, X. Du, S. Mao, J. Mater. Chem. A 2015, 3, 12938.
- 11 Y. Wu, Y. Wei, J. Wang, K. Jiang, S. Fan, Nano. Lett. 2013, 13, 818.
- 12 X. Zhao, D. Xia, K. Zheng, ACS Appl. Mater. Interfaces, 2012, 4, 1350.
- 13 J. Liu, X. Xu, R. Hu, L. Yang, M. Zhu, Adv. Energy Mater., 2016, 6, 1600256.
- 14 L. Lang, Z. Xu, ACS Appl. Mater. Interface, 2013, 5, 1698.
- 15 C. He, S. Wu, N. Zhao, C. Shi, E. Liu, J. Li, ACS Nano, 2013, 5, 4459.
- 16 Z. Liu, X.-Y. Yu, U. Paik, Adv. Energy Mater., 2016, 6, 1502318.
- 17 L. Shen, H. Song, H. Cui, X. Wen, X. Wei, C. Wang, Cryst. Eng. Commun., 2013, 15, 9849.
- 18 M. Sanchez, A. Primo, H. Garcia, J. Mater. Chem., 2012, 22, 21373.
- 19 Y. Ma, C. Zhang, G. Ji, J. Lee, J. Mater. Chem., 2012, 22, 7845.
- 20 Y. Chen, H. Xia, L. Lu, J. Xue, J. Mater. Chem., 2012, 22, 5006.
- 21 T. Zhu, J. Chen, X. Lou, J. Phys. Chem. C, 2011, 115, 9814.
- 22 Q. Xiong, J. Tu, Y. Lu, J. Chen, Y. Yu, Y. Qiao, X. Wang, C. Gu, J. Phys. Chem. C, 2012, 116, 6495.
- 23 Q. Zhang, Z. Shi, Y. Deng, J. Zheng, G. Liu, G. Chen, J. Power Sources, 2012, 197, 305.
- 24 L. Wang, J. Liang, Y. Zhu, T. Mei, X. Zhang, Q. Yang, Y. Qian, *Nanoscale*, 2013, 5, 3627.
- 25 Y. Zhu, J. Xie, G. Cao, T. Zhu, X. Zhao, RSC Advances, 2013, 3, 6787.