Supplementary Information

Facile synthesis of ultrafine Ru nanocrystals supported N-doped graphene as exceptional

hydrogen evolution electrocatalyst in both alkaline and acid media

By Barun Kumar Barman, Debanjan Das and Karuna Kar Nanda*

[*] Prof. K. K. Nanda

Materials Research Centre, Indian Institute of Science, Bangalore-560012, India. E-mail: nanda@mrc.iisc.ernet.in, Fax: +91 80 2360 7316; Tel: +91 80 2293 2996

Experimental section:

Materials: RuCl₃.xH₂O and dicyanamide were purchased from Sigma-Aldrich. Commercial Pt/C (20 wt%, Johnson Matthey Company, HiSPECTM 3000) was used in this work for comparison.

Synthesis of Ru@*NG:* At first, 1 g of dicyanamide (DCA) was dissolved in mixture of ethanol and de-ionized (DI) water (25 ml ethanol + 25 ml of DI-water) at mild temperature condition. Then, appropriate amount (Table S1) of RuCl₃.xH₂O was added in the DCA solution, ultrasonicated for 30 minutes and dried at 80 $^{\circ}$ C. The dried solid mixture was collected and pyrolyzed in 1 cm diameter quartz tube in inert condition. The pyrolysis was performed at different reaction temperature with the ramping temperature rate 10 $^{\circ}$ C/minute. After the experiment, the black colour product was collected, characterized and performed for hydrogen evolution reaction (HER).

Fig. 1 Schematic of the experimental set-up.

Table S-1: Synthesis	s of various	kind of Ru@	NG hybrid catalyst.
----------------------	--------------	-------------	---------------------

RuCl ₃ .xH ₂ O	Organic precursor	Temperature	Morphology
0.1 g (Ru@NG-10)	1 g of dicyanamide	900 °C	NCs with 4-5 nm
0.250 g (Ru@NG-4)	1 g of dicyanamide	900 °C	NCs with 2 nm
0.5 g (Ru@NG-2)	1 g of dicyanamide	900 °C	Agglomerates
			with 2 nm NCs
0.250 g	1 g of dicyanamide	800 °C	NCs with 2 nm
0.250 g	1 g of dicyanamide	1000 °C	NCs with ~10 nm

Characterizations:

Powder X-ray diffraction (XRD) characterization was carried out with PANalytical instrument using a Cu K_{α} (λ = 1.54 Å) radiation source. The Raman spectroscopy studies were performed using WITec300 equipped with confocal microscopy using a Nd:YAG laser (532)

nm) as an excitation source. Field emission Scanning electron microscope (FE-SEM) images and Energy-dispersive X-ray spectroscopy (EDS) were taken on a FE-SEM, FEI-INSPECTF50 instrument by FEI technology. Transmission electron microscope (TEM) and high resolution TEM (HRTEM) images were obtained with a TEM, JEOL- JEM-2100F and selected area electron diffraction (SAED) pattern operated a 200kV accelerating voltage. For TEM characterization, the samples were prepared by dispersing the sample in ethanol solution by ultrasonic bath and drop-casting on carbon coated cupper grid, and then dried. X-ray photoelectron spectroscopy (XPS) was performed for the elemental analysis carried out on an ESCALAB 250 (Thermo Electron) with a monochromatic Al K α (1486.6 eV) source. The surface atomic concentrations were determined from photoelectron peaks areas using the atomic sensitivity factors reported by Scofield.

Electrochemical HER performances:

An ink of the catalyst hybrids was prepared from ultrasonically dispersed 1 mg catalyst in the mixture of 0.09 ml of ethanol + 0.01 ml of Nafion solution. Then, 6μ L of catalyst ink was dispersed on a glassy carbon rotating disk electrode (RDE) followed by drying at 60 ^oC. The catalyst loadings on RDE was 0.857 mg/cm² for all the hybrids and 0.357 mg/cm² for commercial Pt/C. HER measurements were conducted using electrochemical work station with rotating disk electrode and Bi-potentiostat (CH Instruments). A conventional three-electrode cell with AgCl/Ag (3M KCl) as the reference electrode, a Pt wire as the counter electrode and the catalyst film coated RDE as the working electrode was employed and HER performances were evaluated at a rotation speed at 1200 rpm in N₂ saturated 1 M KOH and 1 M H₂SO₄ aqueous solution. The electrochemical surface area of the all the catalyst were measured in 1 M KOH solution with the different scan rate form 10 mV/s to 100 mV/s.

Fig. 2 Particle sizes distribution of Ru@NG-10 hybrid nanostructures.

ESI-3

Fig. 3 Particle sizes distribution of Ru@NG-4 hybrid nanostructures.

Fig. 4 (a-c) TEM and HRTEM images of Ru@NG-10 hybrid structures show the presence of graphene layer and uniform anchoring.

Fig. 5 (a and b) TEM and HRTEM images of Ru@NG-4 hybrid structures showing the presence of graphene layer and uniform anchoring on graphene substrate.

ESI-6: Ru@NG-2

Fig. 6 (a and b) TEM and HRTEM images of Ru@NG-2 hybrid structures showing the presence of graphene layer and uniform anchoring on graphene substrate.

ESI-7: Ru@NG-4

Fig.7 (a-d) SEM and elemental mapping of the Ru@NG-4 hybrid nanostructures, respectively.

ESI-8: EDS spectra

Fig. 8 EDS spectra of (a) Ru@NG-10, (b) Ru@NG-4 and (c) Ru@NG-2 hybrid nanostructures, respectively.

ESI-9: Chronoamperometry

Fig. 9 Chronoamperometry measurements at 100 mV potential in 1 M KOH solution of Ru@NG-4 hybrid structures.

ESI-10: HER generation

Fig. 10 (a and b) Photograph of reaction container of before and after H_2 evolution from Ru@NG-4 electrode surface during LSV measurement.

Fig. 11 CV curves of Ru based different hybrid nanostructures in 1 M KOH solution with different scan rate (a) Ru@NG-10, (b) Ru@NG-4 and (c) Ru@NG-2 with different scan rate. (d) Current density at 100 mV potential as a function of C_{dl} for different Ru@NG.

In order to find the rationality behind the size effect, we plot current density (J)as a function of C_{dl} as shown in Fig. 11. Interestingly, the current density increases almost linearly with C_{dl} . In this context, it is worthy to note that

$$C_{dl} = \epsilon A/d$$

where ε is the electrolyte dielectric constant, A the surface area accessible to ions, and d the distance between the center of the ion and the carbon surface. This indicates that the C_{dl}

depends on the surface area accessible to ions and current density was expected to increase with C_{dl} .

ESI-12

Fig.12 (a, b and c) display the mass and C_{dl} normalized HER activity of Ru@NG hybrids.

Although ECSA calculations for Pt-based catalysts by hydrogen under-potential (H_{upd}) and/or CO stripping experiments is well established, a very few report exists for the case of Ru. Since the double-layer capacitance C_{dl} is proportional to ECSA, it can be safely assumed that the C_{dl} normalized HER activity would show a similar behavior to ECSA normalized HER activity. Following is the C_{dl} normalized HER activity of the Ru-based samples. It is interesting to note that Ru@NG-4 and Ru@NG-2 almost have the same C_{dl} normalized HER activity.

ESI-13: Ru@NG-800 ⁰C

Fig. 13 (a and b) TEM and HRTEM images of Ru@NG-4 hybrid structures which is synthesized at 800 0 C for 1h.

ESI-14: Ru@NG-1000 ⁰C

Fig. 14 (a and b) SEM images of Ru@NG-4 hybrid structures which is synthesized at $1000 \, {}^{0}\text{C}$ for 1h is showing bigger Ru NPs (~10 nm) on N doped graphene.

ESI-15: HER performances of Ru@NG-4 hybrids synthesized at different temperature

Fig.15 HER performances of Ru@NG-4 hybrids synthesized at different temperature.

Fig. 16 Electrochemical impedance spectra of different Ru@NG catalyst in 1 M KOH solution.

ESI-17

Fig. 17 Stability of H_2 and O_2 generation by using Ru@NG-4 as cathode and RuO₂ as anode catalyst up-to 2500th cycle in 1 M KOH solution medium with a scan rate of 50 mV/s.

Catalyst	Onset		Tafel Slope		Potential for 10		Potential for 50	
			(mV/dec)		mV/cm ²		mV/cm ²	
	Acid	Base	Acid	Base	Acid	Base	Acid	Base
Pt/C	0 mV	0 mV	30	92	44	80	80	300
Ru@NG-2	0 mV	0 mV	48	82	74	47	138	225
(2 nm Ru NPs								
agglomareted)								
Ru@NG-4	0 mV	0 mV	41	76	60	40	152	197
(~ 2 nm)								
Ru@NG-10	0 mV	0 mV	62	104	116	128	206	
(4-5 nm)								

Table S-2: Comparison of HER performance of different Ru based hybrid nanostructures.

Table S-3: comparisons of HER performances of Ru@NG hybrid catalyst with the recent developed HER catalyst.

Catalyst	Loading	Electrolyte	Onset	Potential (ŋ)	Ref.
	(mg/cm ²)		Potential	at 10 mA/cm ²	
				current	
				density	
Ultrafine Ru/N-	0.857	1 КОН	0	44 mV	This work
graphene					
Ultrafine Ru/N-	0.857	1 H ₂ SO ₄	0 mV	60 mV	This work
graphene					
Nanoporous Mo ₂ C	0.21	0.5 H ₂ SO ₄	-70 mV	125 mV	Energy Environ. Sci., 2014, 7,
					387-392
α-WC NPs on C	0.724	0.5 H ₂ SO ₄		160 mV	Angew. Chem., Int. Ed., 2014,
black					53, 5131-5136
a-Mo ₂ C	0.102	1 M KOH	-100 mV	176 mV	J. Mater. Chem. A, 2015, 3,
					8361-8368
a-Mo ₂ C	0.102	0.5 H ₂ SO ₄		198 mV	J. Mater. Chem. A, 2015, 3,
					8361-8368
α–MoB micropartil	2.3	1 M KOH/		210-240 mV at	Angew. Chem., Int. Ed., 2012,
ces		1 H ₂ SO ₄		20 mA/cm ²	51,
					12703–1270
Mo ₂ C/graphene	0.285	0.5 H ₂ SO ₄		175 mV	Chem. Commun., 2014, 50,
					13135-13137
MoN nanosheet	0.285	0.5 H ₂ SO ₄	-100 mV	300 mV at 38.5	Chem. Sci., 2014, 5, 4615-4620
				mA/cm ²	
Mo ₂ N	2	0.1 M HClO ₄		230 mV	Energy Environ. Sci., 2013, 6,
					1818-1826
Co _{0.6} Mo _{1.4} N ₂	0.24	0.1 M HClO ₄		200 mV	J. Am. Chem. Soc. 2013, 135, 19186–19192
CoP/CNT	0.285	0.5 H ₂ SO ₄	-40 mV	122 mV	Angew. Chem. Int. Ed. 2014,
					53 , 6710-6714

FeP nanowire	3.2	0.5 H2SO4		55 mV	Angew. Chem., Int. Ed., 2014,
arrays					53, 12855-12859
Cu ₃ P nanowire	15.2	0.5 H2SO4	-62 mV	143	Angew. Chem., Int. Ed., 2014,
arrays					53, 9577-9581
Co/N-C	0.285	0.5 H ₂ SO ₄	-70 mV	265 mV	ACS Appl. Mater. Interfaces
					2015, 7, 8083-8087
Co/N-C	0.285	.1 M NaOH	-70 mV	337 mV	ACS Appl. Mater. Interfaces 2015, 7, 8083-8087
Co ₂ P on Ti	1.0	0.5 M H ₂ SO ₄		95 mV	Chem. Mater. 2015, 27, 3769–
electrode					3774
CoP on Ti		0.5 M H ₂ SO ₄		75 mV	Angew. Chem. Int. Ed. 2014,
electrode					55, 5427 -5450
Co-NRCNT	0.28		-50 mV	260 mV	Angew. Chem. Int. Ed. 2014, 53, 4372 –4376
3-D CoS ₂ /RGO-	1.15	0.5 M H ₂ SO ₄		142 mV	Angew. Chem. Int. Ed. 2014,
CNT					55, 12574 12577
CoTe ₂		0.5 M H ₂ SO ₄	-198 mV	246 mV	Chem. Commun., 2015, 51, 17012-17015
Fe ₂ P/N-G	1.71	0.5 M H ₂ SO ₄	-60 mV	138 mV	Nano Energy, 2015, 12, 666- 674
CoFe@NG	0.285	0.5 M H ₂ SO ₄	-88 mV	262 mV	Energy Environ. Sci., 2015,8, 3563-3571
FeCo@NCNTs-NH	0.32			276 mV	Energy Environ. Sci., 2014, 7, 1919–1923
CoNi@NC	0.32			224 mV	Angew. Chem., Int. Ed. 2015, 54, 1–6
Ni–Sn@C	0.1			350 mV	ACS Appl. Mater. Interfaces, 2015, 7, 9098–9102
1T MoS ₂		0.5 M H2SO4	-100 mV	~ 200 mV	Nano Lett. 2013, 13,
nanosheets					6222-6227
Double-gyroid		0.5 M H ₂ SO ₄		250 mV	Nat Mater, 2012, 11, 963-969
MoS ₂					

Table S-4: Price comparison of different precious catalyst

https://apps.catalysts.basf.com/apps/eibprices/mp/

Metal	Symbol	Price in US\$ per troy ounce
Platinum	Pt	1089.00
Palladium	Pd	691.00
Iridium	Ir	565.00
Ruthenium	Ru	42.00