SUPPORTING INFORMATION

Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes

Benjamin Krüner,^{1,2,†} Christina Odenwald,^{3,†} Aura Tolosa,^{1,2} Anna Schreiber,¹ Mesut Aslan,¹ Guido Kickelbick,^{3,*} and Volker Presser^{1,2,*}

- ¹ INM Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- ² Department of Materials Science and Engineering, Saarland University, 66123 Saarbrücken, Germany
- ³ Inorganic Solid State Chemistry, Saarland University, 66123 Saarbrücken, Germany
- ^{*t*} these authors contributed equally
- * Corresponding authors' eMails: guido.kickelbick@uni-saarland.de (G. Kickelbick); volker.presser@leibniz-inm.de (V. Presser)

	Electrode density (mg·cm ⁻³)	Active mass of one electrode (mg)	Electrode disc diameter (mm)	Electrode thickness (µm)			
1 M TEA-BF₄ in acetonitrile							
Vi-SiOC-CDC	197	1.15	8	122			
Ph _{0.25} Vi _{0.75} -SiOC-CDC	372	2.33	8	131			
Ph _{0.5} Vi _{0.5} -SiOC-CDC	452	2.51	8	116			
Ph _{0.75} Vi _{0.25} -SiOC-CDC	438	2.41	8	115			
AC	435	2.27	8	109			
Aqueous 1 M Na ₂ SO ₄							
Vi-SiOC-CDC	206	1.47	8	150			
Ph _{0.25} Vi _{0.75} -SiOC-CDC	377	2.24	8	124			
Ph _{0.5} Vi _{0.5} -SiOC-CDC	450	2.51	8	117			
Ph _{0.75} Vi _{0.25} -SiOC-CDC	432	2.44	8	118			

Table S1: Properties of the PTFE-bound electrodes.

Table S2: Porosity of the Vi-SiOC-CDC electrodes measured with nitrogen gas sorption.

	SSA _{DFT} (m²·g⁻¹)	SSA _{DFT} loss after voltage floating (%)	SSA _{BET} (m²·g ⁻¹)	Total pore volume (cm ³ ·g ⁻¹)	Total pore volume loss after voltage floating (%)	Average pore size (nm)
Vi-SiOC-CDC initial electrode	1756	-	2287	1.83	-	2.5
Vi-SiOC-CDC negative electrode	980	44	1515	1.23	34	2.6
Vi-SiOC-CDC positive electrode	897	49	1403	1.19	35	2.8

Table S3: EDX element analysis of Vinyl-SiOC-CDC electrodes before the electrochemical testing and after the voltage floating at 1.4 V for 100 h in aqueous 1 M Na₂SO₄. Values below the detection limit are denoted n.d. (not detected).

	С	0	Si	F	Na	S	Cl
	(mass%)	(mass%)	(mass%)	(mass%)	(mass%)	(mass%)	(mass%)
Vi-SiOC-CDC	90 F±0 C	4 1+0 2	2 5 + 0 2	2 0+0 2	nd	n d	n d
initial electrode	89.5±0.0	4.1±0.3	3.5±0.3	2.9±0.3	n.a.	n.a.	n.a.
Vi-SiOC-CDC	81.3±1.3	7.4±1.0	1.6±0.3	3.5±1.1	4.6±0.6	0.7±0.2	0.9±0.2
positive electrode							
Vi-SiOC-CDC	Q1 2±0 5	1 1+0 9	2 2+0 1	6 6+1 6	1 1+0 1	0 5 + 0 1	0.7+0.1
negative electrode	01.3 <u>1</u> 0.3	4.4±0.8	Z.Z±0.1	0.011.0	4.4±0.4	0.5±0.1	0.7 ± 0.1

Figure S1: Overview of the FT-IR spectra of the four polymer beads (A) and detailed spectra in the range of 1000-1600 cm⁻¹ (B). The corresponding mass spectra of $Ph_{0.5}Vi_{0.5}$ -SiO_{1.5} to the thermogram shown in Fig. 2D of relevant evolving groups (C) and (D).

Figure S2: Scanning and transmission electron micrographs of the polymer beads Vi-SiO_{1.5} (A), Ph_{0.25}Vi_{0.75}-SiO_{1.5} (B), Ph_{0.5}Vi_{0.5}-SiO_{1.5} (C), and Ph_{0.75}Vi_{0.25}-SiO_{1.5} (D).

Figure S3: Raman spectra of PDCs (A) and CDCs (B). XRD pattern of PDCs (C) and CDCs (D).

Figure S4: Coulombic efficiencies of all CDC materials including the AC in TEA-BF₄ in ACN (A) and cyclic voltammograms of all CDC samples in aqueous $1 \text{ M Na}_2\text{SO}_4$ (B) up to a cell voltage of 1.2 V.