Electronic Supplementary Information

Silver bismuth iodides in various compositions as potential Pb-free light absorber for hybrid solar cells

Ki Woo Jung, Mi Rae Sohn, Hye Min Lee, In Seok Yang, Sang Do Sung, Jeongho Kim, Eric Wei-Guang Diau and Wan In Lee

Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan.

*Corresponding authors
W. I. Lee (E-mail: wanin@inha.ac.kr), J. Kim (E-mail: jkim5@inha.ac.kr)
Fig. S1 Plan-view and cross-sectional-view SEM images of the Ag$_2$BiI$_5$ (a), and SBI-55:45 (b) and CH$_3$NH$_3$PbI$_3$ (c) films used for obtaining UV-visible absorption spectra. For the preparation of Ag$_2$BiI$_5$ and SBI-55:45 films, each of 0.3 M solution in DMSO/DMF/HI was spin-coated on the 200 nm-thick mesoporous TiO$_2$ layer, followed by heat-treatment at 120 °C. The film thicknesses of these films over TiO$_2$ surface were estimated to ~60 nm. CH$_3$NH$_3$PbI$_3$ films were coated by using a 0.6 M solution, consisting of PbI$_2$ and methylammonium iodide, 600 mg DMF and 78 mg DMSO. After spin-coating at 4000 rpm for 20 s, the coated film was heat-treated at 100 °C for 5 min. The thickness of CH$_3$NH$_3$PbI$_3$ film was also estimated to be ~60 nm. Thus the prepared Ag$_2$BiI$_5$, SBI-55:45 and CH$_3$NH$_3$PbI$_3$ films have quite similar thicknesses.
Fig. S2 $J-V$ curves and photovoltaic parameters of the SC-SBI-67:33 (SC-Ag$_2$BiI$_3$) measured under various light intensities.
<table>
<thead>
<tr>
<th>Preparation method</th>
<th>V_{OC} (mV)</th>
<th>J_{SC} (mA/cm2)</th>
<th>FF (%)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>from SBI-55:45</td>
<td>614</td>
<td>6.329</td>
<td>59.34</td>
<td>2.31</td>
</tr>
<tr>
<td>from AgI and BiI$_3$</td>
<td>510</td>
<td>4.202</td>
<td>51.63</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Fig. S3 J-V curves of SBI-55:45 solar cells derived from two different coating solutions. That is, in preparing SBI-55:45 films, 0.3 M coating solution was prepared by dissolving the Ag$_2$BiI$_5$ powder in the mixed solvent of DMF/DMSO/HI. In comparison, a 0.3 M coating solution was prepared by dissolving the stoichiometric amounts of AgI and BiI$_3$ in the DMF/DMSO/HI. To form the SBI-55:45 layer, the prepared each solution was spin-coated and heat-treated at the same condition.
Fig. S4 Photographic images for the HTM-coated Ag$_2$BiI$_5$ films employing pristine spiro-OMETAD (a) and TBP-added spiro-OMETAD.