Supplementary Information

Dual functions of Zirconium modification on improving the electrochemical performance of Ni-rich LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_2$

Xing Lia*, Kangjia Zhanga, MingShan Wanga*, Yang Liua, MeiZhen Qub, Wengao Zhaoc, Jianming Zhengc*

aThe Center of New Energy Materials and Technology, Southwest Petroleum University, Chengdu 610500, China

bChengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, China

cEnergy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99354, USA

*Corresponding authors. E-mail addresses: lixing@swpu.edu.cn, wangmingshan@swpu.edu.cn, jianming.zheng@pnnl.gov.
Figure 1S The narrow scan focusing on the elements of (a) Co 2p and (b) Mn 2p of the pristine NCM811 and the Zr-modified NCM811.

Figure 2S The charge and discharge curves of the pristine NCM811 and the Zr-modified NCM811 at the C rates of (a) 0.2 C, (b) 0.33C, (c) 0.5C, (d) 1.0C, (e) 2.0C, (f) 3.0C, (g) 5.0C and (h) 10.0C.