Supporting Informations

Functionalization of graphene oxide with naphthalenediimide diamine for high performance cathode materials of lithium-ion batteries

Yidan Songa, Yuanrui Gaob, Hongren Ronga, Hao Wena, Yanyong Shaa, Hanping Zhanga, Hong-Jiang Liub,*, Qi Liua,c,*

aSchool of Petrochemical Engineering, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, P. R. China. E-mail: liuqi62@163.com

bDepartment of Chemistry, College of Science, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, P. R. China. E-mail: liuhj@shu.edu.cn

cState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210093, China

\textbf{Table S1} Elemental composition of GO and NDIDA-GO tested by XPS

<table>
<thead>
<tr>
<th>Sample</th>
<th>C1s (at.%)</th>
<th>N1s (at.%)</th>
<th>O1s (at.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO</td>
<td>67.78</td>
<td>0.74</td>
<td>31.48</td>
</tr>
<tr>
<td>GO-N-Ph</td>
<td>72.95</td>
<td>4.27</td>
<td>22.77</td>
</tr>
</tbody>
</table>

* Corresponding author: Tel: +86 0519 83288656.
E-mail addresses: liuqi62@163.com (Q. Liu), liuhj@shu.edu.cn (H.J. Liu)
Fig. S1. High-resolution XPS spectra of N 1s for NDIDA-GO and GO

Fig. S2. TGA curves of NDIDA, GO and NDIDA-GO.
Fig. S3. Higher magnification FESEM (a) and high magnification FESEM (b) images of the NDIDA-GO sample; higher magnification FESEM (c) and high magnification FESEM (d) images of the GO sample.

Fig. S4. Nitrogen adsorption-desorption isotherm for the synthesized GO. Inset: pore size distribution.
Fig S5 Photographs of the NDIDA electrode and the NDIDA-GO electrode in the electrolyte in different time interval.

Fig. S6. Proposed electrochemical Li storage mechanism in the NDIDA-GO electrode.
Fig. S7. CV curves of the NDIDA electrode.

Fig. S8. CV curves of the NDIDA-GO electrode.

Fig. S9. The Nyquist plot of the NDIDA electrode after 1 cycle. Inset is equivalent circuit model. R_1, and $R_{s\text{ct}}$ values obtained by Zview software simulation are 18.6, and 4366 Ω, respectively.
Fig. S10. The Nyquist plot of the GO electrode after 1 cycle. Inset is equivalent circuit model. R_1, R_s and R_{ct} values obtained by Zview software simulation are 8, 5, 280 and 192 Ω, respectively.