Electronic supplementary information (ESI) of Dark electrical bias effect on moisture-induced degradation in inverted lead halide perovskite solar cells measured by advanced chemical probes

Jérémy Barbé†, Vikas Kumar‡, Michael J. Newman†, Harrison K.H. Lee‡, Sagar M. Jain†, Hu Chen§, Cécile Charbonneau†, Cornelia Rodenburg‡, Wing C. Tsoi†*

†SPECIFIC, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, U.K.

‡Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.

§KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

*E-mail: W.C.Tsoi@Swansea.ac.uk
Figure S1. (a) X-ray diffraction spectra of a perovskite solar cell measured through the Ag top electrode before and after bias degradation (1 V, 1 h, 100% RH N₂). (b) XRD spectra measured after bias degradation at two distinct locations, through the degraded cell (humidity + bias) and outside the cell on the perovskite/PCBM/BCP films (humidity, no bias).

Figure S2. Optical microscope images of the perovskite solar cell edge taken during the first 70 s of electrical bias stress. A voltage of 1.2 V was applied to the cell in the dark and the voltage was turned off for capturing the image under illumination. The upper row shows the cell before exposure to humid N₂ whereas the lower row shows the cell after exposure to humid N₂ for 20
min. The orange dashed line represents the edge of the cell, the region on the left-hand side of the edge is not covered by the Ag top electrode.

Figure S3. Hyperspectral cross-sectional secondary electron images at 0-6.0 eV of sample degraded in 40% RH air (1 V for 1 h). (a) After first scan and (b) after a second scan.

Figure S4. Magnified hyperspectral cross-sectional secondary electron image at 0-6.0 eV of degraded grain (bright grain) after a second scan.
Figure S5. Dark current transients with various biasing voltages at 25°C ($V_{oc} = 0.85$ V). Dark current transients at various voltages were acquired using a Gamry Reference 600 potentiostat. The devices were left at short-circuit for 30 s before a potential step was applied and the dark current recorded until it stabilized (equilibrium reached in less than 30 s).

Figure S6. Chronoamperometry response to 0 – 1 V potential steps for freshly-prepared and 2 days-aged samples.
Figure S7. (a) Current density – voltage curves at 0.8 sun of a fresh perovskite solar cell and after 2 days aging in air. (b) Efficiency drop of the fresh and aged solar cell measured after 1 V bias application in the dark in air. A reference fresh sample that was left in the dark without bias is also shown for comparison.

Figure S8. Current density – voltage curves of MAPbI₃ perovskite devices at 1 sun before and after biasing at 0.5 V, 0.85 V and 1 V under dark conditions for 1 h in 40% RH air.
Figure S9. Current density – voltage curves of Cs$_{0.1}$(MA$_{0.17}$FA$_{0.83}$)$_{0.9}$Pb(I$_{0.83}$Br$_{0.17}$)$_{3}$ perovskite devices at 1 sun before (solid blue lines) and after (dashed blue lines) biasing at 1 V for 1 h under dark condition in 40% RH air. Reference cell left in the same environment for the same duration but without bias are also shown for comparison (black lines).