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Supplemental Materials

Degrees of Mixing and Heat Capacity for All Simulations

In Fig. 5 of our manuscript, we included only the data for rigid polymers. Here we include

the plots for all three flexibilities for completeness. The data here was used to generate the

phase diagrams in Figs. 3 and 4 of our manscript.

Figure 1: Extended version of Fig. 5 of our manuscript including all three flexibilities. Degree
of mixing and heat capacity of rigid random copolymers. Each plot contains the degree of
mixing ⟨φAφB⟩ (left y-axis) from simulated cooling to higher χvM (solid black) and melting
to lower χvM (dashed black). In addition, the heat capacity cχ (green, right y-axis) is shown
in each plot. The vertical lines mark the χvM value of the mean-field spinodal (dotted blue),
the H-to-RM transition (solid blue), the AM-melting phase transition (dashed red), and the
phase transition to the AM phase on cooling (solid red).

Single-chain Conformations

The name “Aligned Micro-phase” denoted as AM in phase diagrams in Figs. ?? and ??

derives from the orientational alignment of the polymers. We quantify the degree of polymer

alignment using the eigenvalues of probability distribution of monomer end-to-end vectors.
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Figure 2: Sphericity, the degree of spherical symmetry of monomer end-to-end vectors, as a
function of χvM . A sphericity of 1 corresponds to uncorrelated orientations while a value of
0 corresponds to perfectly aligned ones. The black dots are drawn from cooling simulations
with increasing χvM , and the red dots are from melting simulations with decreasing χvM
simulations. This set of data is not ensemble averaged.

In particular, we look at sphericity S defined as

S = 3
2(λ2 + λ3)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the matrix

Mij =
∑m pimpjm
∑m p⃗m2

where pim is the ith component of the end-to-end vector of the mth monomer. The sums

are over all monomers in the melt for a particular simulation snapshot. The value of S

ranges from zero for perfectly a aligned melt to one for a randomly oriented melt. Figure 2

shows the sphericity of snap shots drawn from the simulation under different χ, Nm, and
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Figure 3: Chain segment length RJ/RM versus segment rigidity εN at different monomer
rigidities NM = 0.05,0.50,5.00. Plot A and B show RJ/RM for chemically anticorrelated
polymers with λ = −0.75 and ideal random polymers with λ = 0 respectively. Black lines
are unperturbed RJ/RM , ‘+’ symbols represent RJ/RM at χ = 0, and ‘○’ symbols RJ/RM at
χ = 4χMF

S .

λ values. At low χ values corresponding to the H phase, the sphericity is nearly 1. As

one would expect, the lowest sphericity values are observed for rigid alternating polymers at

high χ values. Rigid polymers have a lower entropic penalty to aligning their monomers in

a particular direction and the alternating pattern along the polymer aligning to the lamellar

density field is the driving force for alignment.

Note that there is considerable spread in sphericity in the AM phase for the increasing

χ (Black) configurations. This is due to the dispersity of melt configurations, caused by

segregation frustration. The sphericity values with decreasing χ simulations (red) do not

show a spread, since they start from the same melt configuration at high χ.

Next we compare the single-chain conformational changes of rigid and flexible random

copolymers throughout the phase transition in the melt. We first define chain segment length

RJ as

RJ = ⟨[r⃗(Jl0) − r⃗(0)]2⟩1/2, (1)

where bead index J runs from 0 to MG − 1, and the bracket indicates ensemble average

over all chains and melt configurations. Figure 3 shows RJ/RM versus monomer index J/G,
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at different flexibility NM and degree of chemical correlation λ = −0.75 (A) and λ = 0 (B).

In Fig. 3, the corresponding black lines are the unperturbed segment lengths RJ/RM . The

‘+’ symbols represent RJ/RM in the homogeneous phase at χ = 0 and circles are RJ/RM at

strong segregation at χ = 4χMF
S . The chains with different monomer flexibility show different

scaling of RJ with respect to J/G. The chain conformation, at least by the metric RJ ,

remains largely unperturbed with only a modest stretching of the long distance behavior

of flexible polymers in at strong segregation. The stretching of flexible polymers is more

pronounced when monomers are chemically anticorrelated (λ=-0.75). As we have shown,

anticorrelated polymers form lamellar structures at high χ values, the surface energy of

which is likely responsible for the stretching. On the other hand, rigid polymers (NM=0.05)

remain in the unperturbed conformation throughout the phase transition at both chemical

correlations.

Note that unlike traditional wormlike chain models,1,2 in our simulation the stretching

of rigid polymers are made possible by discrete shearable-stretchable wormlike chains with

chain extension degree of freedom.3,4

These comparisons indicate that flexible polymers microphase segregate as a result of

competition between surface free energy and extensional free energy, while rigid polymers

phase segregation is due to competition between surface free energy and orientational entropy.

The extension of flexible polymers also provides an explanation of the more pronounced shift

of q∗, or the emergence of larger scale domain sizes of anticorrelated flexible polymers shown

in Fig. 6C of our manuscript.

Chain Partitions

When chemical correlation is above the Lifshitz point λ > λMF
L , phase segregation is achieved

by separating chains with different chemical compositions (fraction of A-type monomers in a

single chain). To visualize such spatial partition of chains during phase segregation, we look

at the snapshots of random copolymer melts composed of original chemical identities and
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Figure 4: Original and relabeled snapshots of ideal random copolymers with increasing Flory-
Huggins parameter χvM . (First column): Counts of number of chains according to overall
chemical composition NAG/NG, where NA is number of A-type monomers. (Snapshots in
top two rows): Flexible random copolymers (NM = 5.00) composed of beads with original
and relabeled chemical identities at λ = 0 and λ = 0.25. (Snapshots in bottom two rows):
Rigid, ideal random copolymers (NM = 0.05, λ = 0) composed of beads with original and
relabeld chemical identities.

relabeled identities. By relabeling, we mean ‘recoloring’ the beads by changing the chemical

identity of each submonomer according to the overall chemical composition of the chain. If

a chain is composed of equal to or more than half of the beads as A-type beads, then we

relabel the chemical identity of all beads as A-type on the same chain, and vice versa.

Figure 4 shows the snapshots of polymer melts composed of original and ‘relabeled’

beads. As the top two rows show, when the Flory-Huggins parameter is raised to four

times the mean-field spinodal χ = 4χMF
S , the chains are locally aggregated according to their
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Figure 5: Mixing of replicas by parallel temperting. Each black dot represents that the
configuration that had χvM(t0) at the beginning of data collection visited - at least once -
the replica at χvM at some later time. Each plot is initially diagonal and grows outward. A
solid block represents good mixing.

overall chemical composition. The shapes of the new domains of the relabeled beads are

also reminiscent of the original snapshots. Specifically, at chemical correlation λ = 0.25, the

spread of chain chemical compositions is larger than ideal random copolymers. In this case,

the partition is more visible in the relabeled melts. Likewise, rigid, ideal random copolymers

also aggregate according to the overall chemical compositions of the chains. The domains of

same-identity relabeled beads are larger since the total sizes of chains are larger than flexible

copolymers. This is qualitative evidence of the spatial partition of the chains for formation

of multiphases as proposed by Ref.5

Replica Coupling Details

In order to efficiently sample the rough energy landscape experienced by a melt of many inter-

acting polymer chains we employ parallel tempering.6–8 The basic idea of parallel tempering
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is to run a Monte-Carlo algorithm on a combined system of multiple non-interacting replicas

of the system of interest at different temperatures. A Monte-Carlo move type is introduced

which swaps two sub-systems at different temperatures. This allows replicas at lower tem-

peratures to move between local minima by exchanging with replicas at higher temperatures.

Rather than parallel couple systems at different temperatures, we couple replicas at different

χ values. Because at low χ values our system isn’t frustrated and rapidly re-randomizes

its configuration, any configuration which traverses from a high to low χ value and back

will represent a statistically independent sample. Coupling in χ has the added benefit that

it produces results for a tightly spaced set of χ values. Because system configurations are

nearly computationally independent they are amenable to parallel implementation.

The effectiveness of parallel tempering is dependent on the choice of χ values to parallel

temper over. A good rule of thumb is to space the replicas so that the acceptance ratio is

about 20%.6,9 The probability of exchanging two replicas is given by

p = min(1, e∆χV∆⟨φAφB⟩)

which can be estimated by

p = min(1, e−(∆χ)2V cχ)

Because cχ is a function of χ that is unknown before the start of the simulation, we dynam-

ically adjust each χ such that the probability of exchanging between adjacent χ values is

12-22%. In the case of a first-order phase transition, cχ has a δ singularity and we are unable

to maintain replica exchange across the transition. For this reason our sampling is worse at

χ values in the AM phase.

Just because two replicas are exchanging at a reasonable rate does not mean that effective

parallel tempering is taking place. Because successive swaps are often far from independent

an exhcnage rate of 20% between successive χ values doesn’t mean that a configurations

can travel by successive swaps from highest to lowest χ values. In Fig. 5 we show the χ
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values visited by a configuration during the post initialization period, defined by the final

100 save points ordered by their χ value at the beginning of the period. At low χ values

the configurations mix well, corresponding to a block of points which extends to the axes.

At high χ, configurations never stray far from their inital χ values, particularly for rigid,

alternating polymers. The location of the first-order phase transition is apparent.

Discretization effects

Generally speaking, any numerical methods to find the microstructure of polymeric system

relies to some extent on spatial discretization. Likewise, in the field-theoretic Monte-Carlo

simulation scheme we used, the spatial discretization to account for chemical incompatibility

and melt incompressibility effectively introduces a wavelength cutoff 1/∆ to the Hamiltonian

in the continuous field theory. In the continuous field theory, the chemical incompatibility

interaction distance is based on the spatial delta function δ(r⃗1− r⃗2), which contributes to the

structure factor S(q) at all wavelengths. Whereas in the field-theoretic Monte-Carlo simula-

tion, the calculation of interaction energy based on discretized space effectively ignores the

effect of chemical incompatibility beyond wavenumber q ≈ 1/∆. Such a wavelength cutoff

in the simulation corresponds to ignoring the microscopic length scale contributions to the

thermodynamic behavior. In considering the density-density correlations in the mesoscale

length scale (on length scales comparable to 1/q∗) during phase transition, the spatial dis-

cretization removes the ultra-violet (UV) divergence (on length scales with small wavelength

1/q) in the continuous field theory. However, the choice of the cutoff wavelength needs to be

justified through renormalization group theory .10–13 In our simulation, we chose the wave-

length cutoff 1/∆ such that we can identify the mesoscale features on the order of wavelength

q∗ and microscale density fluctuations beyond the wavelength cutoff are ignored. We will

qualitatively examine the effect of spatial discretization in the simulation, and leave a more

detailed study to a future manuscript.

In the results shown in the manuscript, we chose discretization size ∆ = 1.0. To look
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Figure 6: Main panel: Inverse peak intensities of structure factors at different bin discretiza-
tions versus Flory-Huggins parameter. ◯: ∆=1, ◇: ∆=2/3, ◻: ∆=1/2. Insets: Structure
factors with bin size ∆=1/2 and 1. From blue to red correspond to the range χ/χMF

S = 0.0,
0.25, 0.50, 0.75, 1.0, 2.0, 3.0, and 4.0. The dashed lines are obtained from the mean-field
theory at χ/χMF

S =0.0, 0.25, 0.50, and 0.75. The verticle black dashed lines indicate the bin
size q = π/∆.

at the effect of bin discretization, we performed simulations of rigid random copolymers

(λ = 0.00, NM = 0.05) with different choices of ∆. Figure 6 shows inverse peak intensities

1/S(q∗) versus Flory-Huggins parameter χvM with ∆ = 1/2, 2/3, and 1. The insets in Fig. 6

show the structure factors at ∆ = 1/2 and 1, with the dashed lines indicating the length

scale of the discretization cutoff q = π/∆. The noise in S(q∗) can be largely attributed

to the uncertainty of determining q∗ as shown in the insets. Qualitatively, with choice of

smaller spatial discretization ∆ = 1/2, the structure factors have the same characteristic

features as with ∆ = 1. However, the inverse peak intensities deviate more from the mean-

field theory predictions, since detailed density fluctuations at short wavelengths are included

when discretization bins are smaller. Previous work addressed the discretization dependence

on χ parameters by matching the free energy of the melt to a mean-field expression near χ ≈ 0.
14–16 We implemented this approach and observed that the peak intensities at renormalized

χ values do not collapse onto a single curve. This suggests that a simple linear rescaling of

χ parameters does not fully address the discretizaiton effects on a wide range of interaction

parameters. To fully account for the bin discretization effect, the simulation needs to be
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compared with a theory that removes the UV divergence (such as for diblock copolymers in

Ref.17,18).
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