Electronic Supplementary Information for

Spontaneous wormlike micelles formed in a single-tailed zwitterionic surface active ionic liquid aqueous solution

Panpan Sun, a Fei Lu, a Aoli Wu, a Lijuan Shi*b and Liqiang Zheng*a

aKey Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China

bKey Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China

Additional results

Scheme S1 The route of the synthesis of C_{16}IPS-Nsa.
Fig. S1 DSC curve of C₁₆IPS-Nsa.

The melting temperatures of C₁₆IPS and Nsa are 82.3 and 172-173°C. The obtained melting point of C₁₆IPS-Nsa is 78.7°C.

Surface Properties and Micellization Parameters.

Surface tension measurements were carried out to evaluate the aggregation behavior of zwitterionic SAILs in aqueous solutions. Fig.S2 demonstrates the surface tension (γ) versus concentration (C) plots for the aqueous solutions of C₁₆IPS-Nsa at 25°C. The surface tension gradually decreases with increasing IL concentrations until to a plateau region, indicating that the formation of micelle. From the distinct break point we can obtain the critical micelle concentration (CMC) and the corresponding γcmc (surface tension at CMC) (the value listed the Table S1). DLS was utilized to further investigate the size distributions of the aggregates formed by zwitterionic SAILs. As can be seen from the Fig. S3, the micelle size of 0.64wt% C₁₆IPS-Nsa aqueous solution is approximately 2.8 nm.

Fig. S2 Surface tension as a function of concentration of C₁₆IPS-Nsa in aqueous solutions at 25°C.
Fig. S3 Size and size distributions of the aggregations formed by 10mM $\text{C}_{16}\text{IPS-Nsa}$ at 25$^\circ$C.

Table S1. Surface properties and micellization parameters of zwitterionic SAILs ($\text{C}_{16}\text{IPS-Nsa}$).

<table>
<thead>
<tr>
<th></th>
<th>CMC mM</th>
<th>γ_{CMC} mN/m</th>
<th>Γ_{max} 10^{-3}mmol/m2</th>
<th>A_{min} Å2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}_{16}\text{IPS-Nsa}$</td>
<td>0.032</td>
<td>37.5</td>
<td>3.15</td>
<td>47.4</td>
<td>0.44</td>
</tr>
</tbody>
</table>

The amount of adsorbed surfactant (Γ) at the air-water interface can be calculated using the Gibbs adsorption isotherm:

$$\Gamma = -\frac{1}{nRT}\frac{\partial \gamma}{\partial \ln C} \left(\frac{\partial \gamma}{\partial \ln C}\right)_T \text{ (mmol/m}^2\text{)} \quad [1]$$

where the value of n stands for the number of species at the interface, R is the gas constant (8.314 J⋅mol$^{-1}$⋅K$^{-1}$), T is the absolute temperature (K), C is the surfactant concentration (mol⋅L$^{-1}$), and $\partial \gamma/\partial \ln C$ refers to the slope below the CMC in the surface tension plots. The minimum area occupied (A) by a surfactant molecule at the air-solution interface was obtained from the saturated adsorption as follows:
\[A_{\text{min}} = \frac{1}{N_A \cdot \Gamma_{\text{max}}} (\times 10^{23} \text{Å}^2) \]

where \(N \) is Avogadro's number \((6.022 \times 10^{23} \text{ mol}^{-1})\), and \(\Gamma_{\text{max}} \) is the maximum surface excess concentration.

The packing parameter \(P \) is determined as \(P = \frac{v}{a l} \) by Israelachvili et al., which is an important parameter to interpret the self-assembled structure for amphiphile. where \(v \) is the effective hydrophobic chain volume, \(a \) is the effective head group area of the surfactant molecules, and \(l \) is the surfactant alkyl chain length.\(^3\) Surfactants with \(P < 1/3 \) tend to form spherical micelles, while \(1/3 \leq P < 1/2 \) prefer to form cylindrical aggregates and \(1/2 \leq P < 1 \) prefer to form bilayers. Surfactants with even higher values of \(P \) \((P > 1)\) tend to form reverse structures.

The hydrocarbon chain length \(l \) can be calculated from the following Tanforde equation:\(^3\)

\[l = 1.5 + 1.265N \]

Here \(N \) is the number of carbon atoms in one hydrocarbon chain. The obtained value of \(l \) is 21.74 Å. The effective volume of the hydrocarbon chains \(v \) has been calculated from the equation. The value of the \(v_l \) is 457.8 Å\(^3\).

\[v_l (\text{Å}^3) = 27.4 + 26.9N \]

\(^2\)
Fig S4. FF-TEM image of the C_{16}IPS-Nsa aqueous solutions at 13.96 wt%.

Fig S5. POM pictures of the C_{16}IPS-Nsa aqueous solutions at different concentrations.
a (49.76 wt%); b (60.11 wt%)

Fig S6. Proton assignments and 1H NMR spectra of at different C_{16}IPS-Nsa
concentrations in D$_2$O at 25°C.

![Diagram of a molecule with a 24.3 Å bond]

Fig S7. Geometries optimized at the B3LYP/6-31G (d, p) level of C$_{16}$IPS-Nsa.

The calculation of structural parameters of H$_1$ phase is according to the theory as follows.

The lattice parameters (a_0) of the hexagonal liquid crystalline phase (distance between the centers of adjacent cylinders) were obtained according to equation 4

$$q_{(h,k)} = \frac{4\pi}{\sqrt{3}a_0} \cdot (h^2 + k^2 +hk)^{1/2}$$ \[1\]

where h, k are Miller indexes; $q(h,k)$ is the scattering vector corresponding to the scattering peaks observed in the SAXS spectra for the hexagonal phase; a_0 is the lattice parameter. From the results of SAXS, several structural parameters characterizing the structure of the liquid crystalline phase could be calculated as follows:

$$a_0 = \frac{4\pi}{\sqrt{3}q}$$ \[2\]

the radius of the cylinder unit (d_H) can be obtained using equation 3:

$$d_H = a_0 \frac{\sqrt{\Phi_L}}{\sqrt{2\pi}}$$ \[3\]

Where Φ_L is the volume fraction of surfactant (C$_{16}$IPS-Nsa). The volume fraction of the hydrophobic long alkyl chain part in C$_{16}$IPS-Nsa/H$_2$O mixture system Φ_L is calculated by equation 4:5
\[\Phi_L = \frac{W_C \times V_{CL}}{\rho_C \times V_C} = \frac{W_C \times M_C \times V_{CL}}{M_C \times V_C} = \frac{W_C \times V_{CL}}{\left(\frac{W_C}{\rho_C} + \frac{W_W}{\rho_W} + \frac{W_N}{\rho_N}\right)} \]

where \(W_C, W_N\) and \(W_w\) are the weight fraction of \(C_{16}\)IPS, Nsa and water, respectively, and \(\rho_C, \rho_N\) and \(\rho_w\) are the densities of \(C_{16}\)IPS, Nsa and water, respectively. The density of \(C_{16}\)IPS and Nsa are obtained using a pycnometer as reported previously. The densities of \(C_{16}\)IPS, Nsa and water are 1.1595, 1.420 and 0.997g/cm\(^3\), respectively. \(V_C, V_{CL}\) and \(M_C\) are molecule volume of \(C_{16}\)IPS, molar volume of alkyl chain and the molecular weight of \(C_{16}\)IPS. \(V_{CL}\) is calculated by equation [5]:

\[V_{CL} = N_A \times 10^{-21}[0.027(m-1) + 0.055] \]

where \(N_A\) is Avogadro’s number and \(m\) is the number of methylene in alkyl chain.

References

