Supporting Information

## Cross-Linking of COOH-Containing Polymers Using Ag(I)-Catalyzed Oxidative Decarboxylation in Aqueous Solution

Gengsheng Weng,<sup>a,b</sup> Yu Huang,<sup>b,c</sup> Srinivas Thanneeru,<sup>b</sup> Hongqiang Li,<sup>b,d</sup> Abdullah Alamri,<sup>b</sup> Jie He<sup>b,e,\*</sup>

<sup>a</sup> School of Materials and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo, 315211, China. <sup>b</sup> Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA. <sup>c</sup> College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China. <sup>d</sup> College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 China <sup>e</sup> Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.

Email: Jie.he@uconn.edu (JH)



**Figure S1.** The gelation kinetics of home-made PAA at various ratios of AgNO<sub>3</sub> measured by dynamic rheology at room temperature: (a) 0.03 wt%, (b) 0.06 wt% and (c) 0.12 wt%. All PAA solutions contain residual APS from polymerization as described in the experimental section. Home-made PAA showed a shorter induction period but an additional stage for network development where a slow increase of G' and G" with gelation time was seen after the induction period. This trend is possibly due to the further polymerization of unconverted AA in home-made PAA. Due to the existence of residual AA, the  $t_{gel}$  of home-made PAA is also shorter than that of the commercial PAA at 0.06 and 0.12 wt% of AgNO<sub>3</sub>. The presence of residual AA monomers is expected to accelerate the formation of networks by increasing the concentration of free radicals.



**Figure S2.** Dynamic frequency sweep of PAA60/PVA40 hydrogels incorporation of 0.03 wt%, 0.06 wt% and 0.12 wt% AgNO<sub>3</sub>: (a) G' vs shear frequency. (b) G" vs shear frequency. As increasing AgNO<sub>3</sub> amount from 0.03 wt% to 0.12 wt%, the viscoelastic moduli within the whole frequency range are promoted continuously. It suggests that more Ag(I) ions lead to a higher cross-linking density of hydrogels and the improvement of the mechanical toughness significantly.

| Entry | PAA/PVA ratio | Tensile strength | Strain at | Elastic modulus |
|-------|---------------|------------------|-----------|-----------------|
|       | (w/w)         | (kPa)            | ruputure  | (kPa)           |
| 1     | 100/0         | 15.1±2.1         | 3.4±0.2   | 6.65±0.51       |
| 2     | 80/20         | 22.3±1.1         | 26.1±1.2  | $0.29 \pm 0.02$ |
| 3     | 60/40         | 21.2±1.4         | 21.6±0.8  | 0.31±0.03       |
| 4     | 50/50         | 16.4±1.0         | 17.1±0.9  | $0.79 \pm 0.02$ |
| 5     | 40/60         | 15.3±0.9         | 11.8±0.7  | $1.03 \pm 0.03$ |
| 6     | 20/80         | 29.1±1.7         | 9.0±0.7   | 1.97±0.06       |
| 7     | 0/ 100        | 22.3±2.0         | 6.4±0.2   | $1.01 \pm 0.08$ |

AgNO<sub>3</sub> concentration is 0.6 wt%. Table S1 shows the tensile strength, maximum elongation and elastic modulus can be readily tuned by varying PAA/PVA weight ratios.