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Supplemental Materials: Self-assembly and rheology of dipolar colloids in simple shear -
studied by multi-particle collision dynamics

1 Simulation parameters

The choice of the simulation parameters preserves the hierarchy of the physical and simulation timescales as described previouslyS1-52

to ensure consistency with typical colloidal systems: the ratio of the mass of the colloid M), to the mass of the MPCD particle m is 79, the
nominal number of the MPCD particles per bin is (n;) = 6. The extent of the collision environment « defines the spatial accuracy of the

hydrodynamic flowS? and is set to a = 0.56 to properly resolve the flow on the scale of the aggregates n > 2, whose contribution to the

. . . . -1 . . . .
viscosity scales as o< n’. The mean free path of the MPCD patrticles is /,,pcq = Atypea (\ /Bm f) =0.30 ensuring Galilean invariance 3153,

The time between the multi-particle collisions is At,,.; = 0.0347, where 7 = 61/BM),. The simulations are performed with LAMMPS 5455 in
a rheometric slit channel of extent Ly, Ly, L, (volume V = LyLyL;). For zero-field simulations Ly = Ly = L, = 240, whereas, for simulations
with an applied field (in y direction) the size of the box is increased for larger interaction parameters A: Ly =L; = 166 (A <4) or 240
(A 24) and Ly =320 (A <4), 480 (A =4), 720 (A >5) to accommodate the growing microstructure. Periodic BCs are used in the x (flow)
and z (vorticity) directions, in the y (gradient) direction the channel is bounded by the free-slip walls realizing reflections v, - —v, of
the incoming MPCD particles and a short-range repulsive potential of the form (4) (Main text) is applied to the approaching colloids
to prevent percolation of the microstructure at larger A. The colloids are randomly dispersed at a predefined volume fraction ¢ (in
all simulations ¢ = 5vol.% except when ¢ itself is varied) with the total number N, = ¢v;1V, where V = LyLyL; is the volume of the
simulation box and v, = é7w3 is the volume of a colloidal particle. The total number of the MPCD particles is N pcq = a3V (1-9)(ny).
In the flow simulations the shearing is induced by adjusting the streaming velocities (v}, of the MPCD particles in the bins nearest to
the channel walls. After a brief limit run the system was equilibrated for z.; = 4,0007 (A < 4), 8,0007 (A =4) or 20,0007 (A > 5) followed
by a production run of 4,000 - 20,0007, depending on the size of the system and the shear rate. Bin-wise sampling was used to measure
the flow profile and determine the actual shear rate y. Every simulation was repeated between 4 and 32 times to produce statistically
independent trajectories and reduce scatter in the measured observables. The error is reported in terms of the standard deviation.

2 Equilibrium partition function
Accounting for just the nearest neighbor interactions the partition function of a self-assembled chain is s6
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whereas the interactions beyond the directly adjacent particles along the chain lead to the renormalization of the bond strength A —
¢ (3),¢(3) =1.202.57-58 The pair partition function Z, in zero and infinite field 58
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3 Chain deviation angle

Tallying the dipolar (F™) and hydrodynamic (F") force couples starting from the center (i = 1) of the chain®!5'2 in Fig. S1: I/ =
2 zl‘./z"l ice,xF :"h where e, is the director vector of the chain and v, = % The energy of the magnetic bond Uy, (ey, ey, e,) = —AkT (3 cos” 6, — l)
(ey is the unit vector in the vertical (y) direction) produces a magnetic force couple: Fiy = —é aaUé’”’ eg = —6AkT o' cos 6,sin6,eg and —F K
acting on the i and G-1H™ particles (eg is the unit vector in the direction of increasing deviation angle 6,). Summing the individual
contributions along the chain, a realigning torque is provided by the end particles, where the magnetic force couples are not compen-
sated I = -6 (n— 1) AkT cos 6, sin O, x ee. In turn, assuming the free draining limit, the hydrodynamic force acting on the ih particle
of the n-particle chain in simple shear F = 671:1106 ij/cos 6nex (ex is the unit vector in the x direction, 7 is the vicosity of the solvent)

and the deviating torque I'* = fn (n - 1) mNoy6° cos® Bhe, x eg. The torque equilibrium '™ +T" = 0 yields the deviation angle 6, of the
n-mer
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tan 6, = D (n +n)Mn sS4

4 (Critical chain length

Considering the radial force balance of a rigid chain %512 (Fig. S1): the n-particle chain is broken, when the strength of the bond F" =
agjd =3AkTo™! (3 cos? 6, — 1) is overcome by the overall shear force extending the chain F} = ZV" Fh er=j (n - 1) TN 62 cos B, sin .

The equation for the maximum length of a stable chain is produced from the radial mechanical balance of the bonding force versus the
hydrodynamic erosive force F" + F;' = 0 accounting for eq. (S4): 4n* +5n* —2n* —=3n—- 28 = 0. To a leading order in n the critical length

. Mn? —
is
62 (S5)



Figure S1 Schematic representation of a straight chain of dipolar particles (here a trimer containing n = 3 particles) with field-aligned dipoles and acting
forces in simple shear and strong magnetic field applied vertically, magnetic field lines around the chain (note: vector lengths not to scale). The particles
are indexed from the center (i = 1). The peaks of the positional probability distribution P; along the director show that the central particle is well localized
near the center of mass, whereas the end particles are less confined.

5 Geometrical coefficients of an n-particle chain

The geometrical coefficients used in eq. (26) are 59-511
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where the elliptic integrals for the case of an ellipsoid of revolution are
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with Qn (s) = (1+5)Vn2 +s.
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Figure S2 (a) - simulation snapshot (box size 240 x 240 x 240) of spontaneous association of dipolar particles without an applied field at a volume
fraction ¢ = 5% and dipole interaction parameter A = 4. Blue background depicts a sea of MPCD point particles representing the solvent. Simulation
snapshots for varying strength of dipolar interactions: (b) A =3, (c) A =4, (d) A =5. Substantial lengthening and branching of the particle chains is
observed at larger A. Particles color-coded by chain length n: monomers (n = 1) are blue, n> 10 - red.

Figure S3 Simulation snapshots (box size 240 x480 x245) with strong vertical external field at a volume fraction ¢ =5% and dipole interaction parameter
A =4 in equilibrium (left - (a), (¢)) and under shear (right - (b), (d)) show chains of various length aligned in the direction of the field and deviated by
imposed shear flow at Mn ~ 0.012. Side view - (c), (d) along the vorticity direction. Top view - (a), (b) along the direction of the applied field showing
that the chains are uniformly dispersed within the layer in either case. Particles color-coded by chain length n: monomers (n = 1) are blue, n > 10 - red.
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Figure S4 Calculated positional probability density distribution functions P (r) corresponding to the simulations in Figure S3 (1 =4, ¢ = 5%, note: free-
floating monomer contributions are substracted). Left - 3D PDF P(r) in equilibrium. Right - projection of the PDF P (x,y) = [ P(r)dz onto the shear
(velocity-vorticity) plane for the same system in equilibrium and at a shear rate Mn » 0.012. The deviation of the n—particle chains by the angle 6, from
the direction of the field is visible in the PDF. The bars show the average chain length {n) for comparison.



Figure S5 Chain length distributions g, in simple shear (with reduced shear rate Mn) and strong external field for ¢ =5% and A =4; v, = éncﬁ is the
particle volume. The inset shows a detailed view of the initial region. The recovery of the tail of the chain length distribution is observed at approx.
0.03 < Mn < 0.15 signifying a transition into a shear-banded state.
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Figure S6 Scaling factors oy, and Bu, used to collapse the non-equilibrium simulation data in Figure 6 (Main text) as a function of the Mason number
Mnfor 2 =2 (@), A =3 (®), X =4 (R), A =5 (&). For lower shear rates Mn < 1072 ays,,- Byn = 1 and o, — 1 » 1 — By, The lines are intended to guide the
eye.
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Figure S7 Projection of the non-equilibrium PDF P (r) onto the shear (velocity-vorticity) plane without an applied field at a volume fraction ¢ = 5%,
dipole interaction parameter A =4 and Mn ~ 0.016, showing the deformation of the conformations ellipsoid in simple shear.
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Figure S8 Intrinsic viscosity [n] as a function of the Mason number Mn for varying fraction of dipolar particles ¢ = 1% -9% at L =4. A series of
calculations has been performed with varying volume fractions ¢ = 1% — 9% of the colloidal particles to check whether the intrinsic viscosity (28)
provides an appropriate scaling for a self-assembled system, where the contributions of the individual colloidal particles should not be additive. The
figure shows that for all considered volume fractions the shear thinning regions satisfactorily collapse onto a single curve, which is supported by the
chain model. In turn, the model predicts that the plateau region scales as [n] o ¢>. The simulation data also shows some dispersion in the vicinity
of plateau, however, much smaller than the theoretically predicted. Thus, the intrinsic viscosity provides a satisfactory scaling with respect to the
concentration ¢ of the colloidal particles along the whole viscometric curve.



