
Supplemental Materials: Self-assembly and rheology of dipolar colloids in simple shear -
studied by multi-particle collision dynamics

1 Simulation parameters

The choice of the simulation parameters preserves the hierarchy of the physical and simulation timescales as described previouslyS1,S2

to ensure consistency with typical colloidal systems: the ratio of the mass of the colloid Mp to the mass of the MPCD particle m f is 79, the
nominal number of the MPCD particles per bin is `nJe � 6. The extent of the collision environment a defines the spatial accuracy of the
hydrodynamic flowS2 and is set to a � 0.5σ to properly resolve the flow on the scale of the aggregates n C 2, whose contribution to the

viscosity scales as � n3. The mean free path of the MPCD particles is lmpcd � ∆tmpcd �»βm f ��1
� 0.3σ ensuring Galilean invarianceS1,S3.

The time between the multi-particle collisions is ∆tmpcd � 0.034t̃, where t̃ �σ
»

βMp. The simulations are performed with LAMMPSS4,S5 in
a rheometric slit channel of extent Lx, Ly, Lz (volume V � LxLyLz). For zero-field simulations Lx � Ly � Lz � 24σ , whereas, for simulations
with an applied field (in y direction) the size of the box is increased for larger interaction parameters λ : Lx � Lz � 16σ (λ @ 4) or 24σ

(λ C 4) and Ly � 32σ (λ @ 4), 48σ (λ � 4), 72σ (λ C 5) to accommodate the growing microstructure. Periodic BCs are used in the x (flow)
and z (vorticity) directions, in the y (gradient) direction the channel is bounded by the free-slip walls realizing reflections vn � �vn of
the incoming MPCD particles and a short-range repulsive potential of the form (4) (Main text) is applied to the approaching colloids
to prevent percolation of the microstructure at larger λ . The colloids are randomly dispersed at a predefined volume fraction φ (in
all simulations φ � 5vol.% except when φ itself is varied) with the total number Np � φv�1

p V , where V � LxLyLz is the volume of the
simulation box and vp �

1
6 πσ

3 is the volume of a colloidal particle. The total number of the MPCD particles is Nmpcd � a�3V �1�φ�`nJe.
In the flow simulations the shearing is induced by adjusting the streaming velocities `vvveJ of the MPCD particles in the bins nearest to
the channel walls. After a brief limit run the system was equilibrated for teq � 4,000t̃ (λ @ 4), 8,000t̃ (λ � 4) or 20,000t̃ (λ C 5) followed
by a production run of 4,000�20,000t̃, depending on the size of the system and the shear rate. Bin-wise sampling was used to measure
the flow profile and determine the actual shear rate γ̇. Every simulation was repeated between 4 and 32 times to produce statistically
independent trajectories and reduce scatter in the measured observables. The error is reported in terms of the standard deviation.

2 Equilibrium partition function

Accounting for just the nearest neighbor interactions the partition function of a self-assembled chain isS6
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whereas the interactions beyond the directly adjacent particles along the chain lead to the renormalization of the bond strength λ �

λζ �3� ,ζ �3� � 1.202.S7,S8 The pair partition function Z2 in zero and infinite fieldS8
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3 Chain deviation angle

Tallying the dipolar (FFFmmm) and hydrodynamic (FFFhhh) force couples starting from the center (i � 1) of the chainS11,S12 in Fig. S1: ΓΓΓ
m,h

�

2Pνn
i�1 iσeeer�FFFm,h

i where eeer is the director vector of the chain and νn �
n�1

2 . The energy of the magnetic bond Udd �eeey,eeey,eeer���λkT �3cos2
θn�1�

(eeey is the unit vector in the vertical (y) direction) produces a magnetic force couple: FFFm
θ � �

1
σ

∂Udd
∂θ

eeeθ � �6λkT σ
�1 cosθn sinθneeeθ and �FFFm

θ

acting on the ith and (i-1)th particles (eeeθ is the unit vector in the direction of increasing deviation angle θn). Summing the individual
contributions along the chain, a realigning torque is provided by the end particles, where the magnetic force couples are not compen-
sated ΓΓΓ

m
� �6�n�1�λkT cosθn sinθneeer � eeeθ . In turn, assuming the free draining limit, the hydrodynamic force acting on the ith particle

of the n-particle chain in simple shear FFFh
i � 6πη0σ

2iγ̇ cosθneeex (eeex is the unit vector in the x direction, η0 is the vicosity of the solvent)
and the deviating torque ΓΓΓ

h
�

1
2 n�n2

�1�πη0γ̇σ
3 cos2

θneeer � eeeθ . The torque equilibrium ΓΓΓ
mmm
�ΓΓΓ

hhh
� 0 yields the deviation angle θn of the

n-mer
tanθn �

1
12

�n2
�n�Mn (S4)

4 Critical chain length

Considering the radial force balance of a rigid chainS11,S12 (Fig. S1): the n-particle chain is broken, when the strength of the bond Fm
r �

�
∂Udd

∂ r ��3λkT σ
�1 �3cos2

θn�1� is overcome by the overall shear force extending the chain Fh
r �Pνn

i�1 FFFh
i �eeer �

3
4 �n2

�1�πη0γ̇σ
2 cosθn sinθn.

The equation for the maximum length of a stable chain is produced from the radial mechanical balance of the bonding force versus the
hydrodynamic erosive force Fm

r �Fh
r � 0 accounting for eq. (S4): 4n4

�5n3
�2n2

�3n� 288
Mn2 � 0. To a leading order in n the critical length

is

ncrit �

¾
6
º

2
Mn

(S5)
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Figure S1 Schematic representation of a straight chain of dipolar particles (here a trimer containing n � 3 particles) with field-aligned dipoles and acting
forces in simple shear and strong magnetic field applied vertically, magnetic field lines around the chain (note: vector lengths not to scale). The particles
are indexed from the center (i � 1). The peaks of the positional probability distribution P3 along the director show that the central particle is well localized
near the center of mass, whereas the end particles are less confined.

5 Geometrical coefficients of an n-particle chain

The geometrical coefficients used in eq. (26) areS9–S11
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where the elliptic integrals for the case of an ellipsoid of revolution are
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with Qn �s� � �1� s�ºn2
� s.
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(a) (b) (c) (d)

Figure S2 (a) - simulation snapshot (box size 24σ � 24σ � 24σ ) of spontaneous association of dipolar particles without an applied field at a volume
fraction φ � 5% and dipole interaction parameter λ � 4. Blue background depicts a sea of MPCD point particles representing the solvent. Simulation
snapshots for varying strength of dipolar interactions: (b) λ � 3, (c) λ � 4, (d) λ � 5. Substantial lengthening and branching of the particle chains is
observed at larger λ . Particles color-coded by chain length n: monomers (n � 1) are blue, n C 10 - red.

(a) (b)

(c) (d)

Figure S3 Simulation snapshots (box size 24σ �48σ �24σ ) with strong vertical external field at a volume fraction φ � 5% and dipole interaction parameter
λ � 4 in equilibrium (left - �a�, �c�) and under shear (right - �b�, �d�) show chains of various length aligned in the direction of the field and deviated by
imposed shear flow at Mn � 0.012. Side view - �c�, �d� along the vorticity direction. Top view - �a�, �b� along the direction of the applied field showing
that the chains are uniformly dispersed within the layer in either case. Particles color-coded by chain length n: monomers (n � 1) are blue, n C 10 - red.
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Figure S4 Calculated positional probability density distribution functions P�rrr� corresponding to the simulations in Figure S3 (λ � 4, φ � 5%, note: free-
floating monomer contributions are substracted). Left - 3D PDF P�rrr� in equilibrium. Right - projection of the PDF P�x,y� � R P�rrr�dz onto the shear
(velocity-vorticity) plane for the same system in equilibrium and at a shear rate Mn � 0.012. The deviation of the n�particle chains by the angle θn from
the direction of the field is visible in the PDF. The bars show the average chain length `ne for comparison.
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Figure S5 Chain length distributions gn in simple shear (with reduced shear rate Mn) and strong external field for φ � 5% and λ � 4; vp �
1
6 πσ

3 is the
particle volume. The inset shows a detailed view of the initial region. The recovery of the tail of the chain length distribution is observed at approx.
0.03 @ Mn @ 0.15 signifying a transition into a shear-banded state.

1

10

10-4

10-3

10-2

10-1

110-4 10-3 10-2 10-1

1.28 ± 0.06

α M
n-
1

Mn

1

10

10-4

10-3

10-2

10-1

110-4 10-3 10-2 10-1

1-
β M
n

Mn

Figure S6 Scaling factors αMn and βMn used to collapse the non-equilibrium simulation data in Figure 6 (Main text) as a function of the Mason number
Mn for λ � 2 (t), λ � 3 (`), λ � 4 (u), λ � 5 (|). For lower shear rates Mn @ 10�2

αMn �βMn � 1 and αMn �1 � 1�βMn. The lines are intended to guide the
eye.

Figure S7 Projection of the non-equilibrium PDF P�rrr� onto the shear (velocity-vorticity) plane without an applied field at a volume fraction φ � 5%,
dipole interaction parameter λ � 4 and Mn � 0.016, showing the deformation of the conformations ellipsoid in simple shear.
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Figure S8 Intrinsic viscosity �η� as a function of the Mason number Mn for varying fraction of dipolar particles φ � 1%� 9% at λ � 4. A series of
calculations has been performed with varying volume fractions φ � 1%� 9% of the colloidal particles to check whether the intrinsic viscosity (28)
provides an appropriate scaling for a self-assembled system, where the contributions of the individual colloidal particles should not be additive. The
figure shows that for all considered volume fractions the shear thinning regions satisfactorily collapse onto a single curve, which is supported by the
chain model. In turn, the model predicts that the plateau region scales as �η�� φ

2. The simulation data also shows some dispersion in the vicinity
of plateau, however, much smaller than the theoretically predicted. Thus, the intrinsic viscosity provides a satisfactory scaling with respect to the
concentration φ of the colloidal particles along the whole viscometric curve.
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