Supporting Information

Core-shell nano-latex blending method to prepare multi-shape memory polymers

Hongze Li, Yingwu Luo, Xiang Gao*

The State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China

E-mail: gaox@zju.edu.cn

Fig. S1 Chemical structure of St-b-(St-random-MA)-b-St triblock copolymer. Among this, y represents a total number of random copolymerization of St and MA.
Fig. S2 Photographs of the blended material. (a) The material prepared from latex blending method with blending ratio of 1 : 1 : 1 (polymer 1 : polymer 2 : polymer 3); (b) The material prepared from solution blending method with blending ratio of 1 : 1 : 1 (polymer 1 : polymer 2 : polymer 3).

Fig. S3 Comparison of (a) strain to break; (b) strength at break; (c) young’s modulus between materials employing two different blending methods under different temperatures.
Fig. S4 Multi-shape memory cycle of the material prepared from solution blending method with blending ratio 1 : 1 : 1 (polymer 1 : polymer 2 : polymer 3). (a)-(d) were a set of replicate samples.