Supporting Information

Liquid Crystalline Epoxy Networks with Exchangeable Disulfide Bonds

Yuzhan Lia, Yuehong Zhanga, Orlando Riosb, Jong K. Keumc, and Michael R. Kesslera,*

a School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
b Deposition Sciences Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
c Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

* PO Box 642920, Pullman, WA, 99164-2920; Phone (509) 335-8654; Email: MichaelR.Kessler@wsu.edu

List of supplementary figures and videos

Figure S1 Synthesis route and reaction mechanism of LCEN.
Figure S2 Liquid crystalline properties of LCEN with different amount of DSA during curing.
Video S1 Thermally induced unfolding of LCEN
Video S2 Thermally induced re-assembling of LCEN
Figure S1. Synthesis route and reaction mechanism of LCEN.

Figure S2. Evolution of LC transition temperature (T_{lc}) and the related enthalpy (ΔH_{lc}) of LCENs cured with different amount of DSA.