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1. Non-dimensionalization of the governing equations 

We non-dimensionalize our systems of equations (Equations 1-5). Naturally, the characteristic 

separation should be initial separation, so that the dimensionless separation is 
0

h
h

h
 , and h start at 1 during 

experiments and the contact position is at  0h  . We set the dimensionless radial position to be 
0 0

r r
r

r Rh
  , 

normalize r by the initial hydrodynamic radius.  If we substitute h and r in Equation 1 with their 
dimensionless variables and rearrange we get: 
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Note that 0t  and 0p  are assumed dimensionless parameters for time and pressure. From Equation 
5, we know that Vt and w should have the dimensionless parameter of 0h (same as h ), because they are being 

added or subtracted from h . Therefore, 0
0

t h
t

Vt
  . After re-arranging and cancelling terms, we have: 
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We then set 0p  to be 
2

0

RV

h

 , then:   
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Which is the Equation 6 in the paper. If we further put dimensionless parameters acquired so far 
into Equation 5: 
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Which is the Equation 10 in the paper if we denote spring parameter K as 
2

0
2

kh

R V
.  

In equation 4, all the dimensional parameters are known, except for Hankel transform variable  . 

However, since r is dimensionless,  0Rh  , and the dimensional parameters of r cancel out in the 

Bessel function.  We can render Z into dimensionless term: 

    
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From equation 3, we can see that the dimensional parameter for elastic coating thickness,  , should 

be 0Rh , since  is multiplied with  to be the exponential order. From that, we set 
0

T
Rh


  to be the 

dimensionless coating thickness, which is also a key parameter.  

If we then put all parameters into equation 2, after re-arrange and cancel terms, we have: 
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And therefore:  

  

 


    
00

2
( ) ( ) ( )w X T Z J r d    




   ,  

with 
1.5

2.5 *
0

R V

h E

  , which is our third key dimensionless parameter. 

Note that in the above analysis, the *E  and ( )X  terms both have the Poisson’s ratio.  In the 
current model, we set the Poisson’s ratio to be 0.5 (constant), which represents incompressible 
materials. If the Poisson’s ratio is not set to a known numerical value, the non-linear dependence of 

( )X  with respect to the Poisson’s ratio in equation 3 makes it hard to extract the contribution of 
the Poison’s ratio into a dimensionless parameter.  This issue has been overcome in previous works 
1, 2 by expanding equation 3 for limiting cases (thin or thick films). For example, expand ( )X  at 

~ 0 (thin film) lead to 2( ) ~ (1 2 ) / (2(1 ) )X v v    for 0.5v  . Note that here the contribution of 
Poisson’s ratio in ( )X  is separated from the contribution of  , and the  2(1 2 ) / (2(1 ) )v v   part can 
be taken out from the integration in equation 2 because it’s independent of  . By this method, the 
scaling of v  in   that works for all v could be found, but just for thin films. Since we seek a general 
framework that is valid for all thicknesses and elasticity, including intermediate film thicknesses, 
we did not expand ( )X  but set the Poisson’s ratio to be a constant value of 0.5, so that the choice 
of elasticity parameter with respect to v  won’t have an effect on the numerical results. Note that for 
Poisson’s ratio < 0.5, the dimensional numerical results using our model are still CORRECT. 
However, a modification parameter with respect to Poisson’s ratio might be needed for comparing 
the dimensionless results of 0.5v   with 0.5v  that have the same elastic parameter. 
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2. Numerical Algorithm 
2.1. Flow chart 

 

Fig. S1. Flow chart for the numerical algorithm employed. 

 

2.2. Remarks on the flow chart. 

(1) To initialize the calculation the surface at 0t   was set to be undeformed and stationary and the 
hydrodynamic pressure is zero.  

(2) The technique of backward finite difference was used to update variables such as  /d h dt .  

(3) Since pressure is axially symmetric, the 

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r
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
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

 . The pressure at far side 
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in dimensional form) was set to be zero and pressure was neglected for 
0

0.1
R

r
h

 . The vector  3 p
rh

r





  

could be fitted using Matlab command “spline” and “fnval”.  

(4) The liquid pressure for 
0

0.1
R

r
h

 is neglected. Thus, the cutoff value Y was set to be 
0

0.1
R

h
. 
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(5) The Hankel transform variable   was carefully meshed (1000 points) to ensure accuracy of 

integration. Usually the maximum value of   taken was ~ 510 . Note that some noise in integrant 

could be observed at very large  , if the mesh of r  is not fine enough.  

(6) The error in  guessh  was transferred back into dimensional term and the tolerance criteria was set to 

be 0.01 nm, which is beyond the resolution of most experiments. However, a better initial   guessh  
can be gained if a smaller tolerance criteria is used, especially when the surfaces are very close. 

(7) A simple method to update the new  guessh  is to decrease the separation needed to satisfy the force 

balance (Step 6). (   *
0.5( )guess guess calculatedh h h  ). Here the 

*

guessh  represents the revised  guessh  for 

proceeding iteration step, and  calculatedh  is the calculated separation from the force balance (Step 6) 
along with the hydrodynamic force from integration of pressure (Step 4). However, due to the 
nature of lubrication equation, at small separations, the pressure tends to be extremely sensitive to 
the change of separation. Therefore, a small change in  guessh  might results in huge change in 
pressure, and the iteration can diverge. To improve the convergence, a weight factor ( fw ) ranging 

from 0 to 1 is used in updating  guessh , and the new 
*

guessh  is  ( (1 ) )guess calculatedf fw h w h  . If fw  is set 

to be close to 1, the change  guessh  after each iteration is relatively small and more iterations need to 
be run before a satisfactory solution is reached. On the other hand, because the convergence 
decreases with decreasing surface separations, the weight factor need to be modified to be closer 
to 1 over time. This trade-off limits the efficiency of computation. In the current model, fw  could 

be as large as 0.999 when surfaces are close. 
 

3. Validation of layered theory 

 

We validate our results by recovering two well-known theories: Reynolds’ theory for rigid surfaces,3 
and DSH theory for soft half-space.4 Regardless of coating material, a surface with an extremely thin 
coating would have negligible deformation due to constraints of a rigid substrate. In that case, it would be 

adequate to describe the drainage process from Taylor equation, 
26 R dh

F
h dt


 . In our model, if we set the 

thickness parameter to very small values, for example T = 0.01, we find that our results overlap with Taylor 
equation (see Figure S2), in which Reynolds’ theory is plotted in dashed blue lines and the layered model 
for T = 0.01 is plotted in grey solid lines. The overlapping between two methods is found for all the central 

 

Fig. S2. Comparison of Elastohydrodynamic stratified theory with known limits: DSH model plotted 
in red dashed lines, and Reynolds’ theory plotted in blue dashed lines. In all figures, Spring parameter
K is set to be 200, and Elasticity parameter (  ) for deformable surfaces are set to be 0.0026.  Grey 
lines:  T = 0.01. Black lines: T = 20. Red dashed lines: DSH theory for half space. Blue dashed lines: 
Reynolds’ theory for rigid surfaces.  
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separation (0, )h t , repulsive force F  and central deformation (0, )w t . On the other hand, in absence of 
substrate effects, drainage past a surface with an extremely thick compliant film will mimic that of a half-
space. We take DSH model for elastic half-space and compare it with our model for the same elasticity but 
for a thickness parameter of T = 20, and find the force curves overlap again. In Figure S2, the red dashed 
lines indicate the DSH model and black solid lines indicate the new model with T = 20. Therefore we 
recover both the extremely thin and thick limits, by simply changing one parameter without different 
assumptions. 

 

4. Non-monotonic relations on Force vs. separation curve for varying coating thickness 

The reason for the non-monotonic dependence shown in Figure 5 is because of initialization of spring 
deflection in the experiments. To magnify this effect and discuss its origin, we first look at the limiting case 
of ~K  , which correspond to the case of using an infinitely rigid spring compared to the compliance of 
surface.  At the beginning of the experiments (t = 0), the motor is at rest and have a moving speed of 0, so 
there is no deflection, no deformation, and h is kept at 0h . After the first time increment, the motor move 
V∆t towards the other surface. In the limiting case where ~K  , the displacement of the motor (point A in 
schematic Fig. S3(Left) will be fully transmitted to the surface (point B in schematic), and the movement 
of point B generates drainage flow. For rigid surfaces, because of the absence of compliant coatings, there 
is no deformation at this step, and h = x. Therefore, V = dh/dt = constant, so that at the first time increment, 

the hydrodynamic force needs to be updated from 0 to a finite value directly (
26 R V

F
h


 , see the “vertical 

wall” of rigid black line in Fig. S3(Right). For a deformable surface, however, drainage flow deforms the 
coating instantly and as a result the value of dh/dt is no longer equal to, but smaller than V, because the 
deformation increases the separation. So the initial value of the hydrodynamic force is 

2 26 6R dh R V
F

h dt h

 
   . See zoom-in of Fig. S3(Right). The thicker the coating is, the larger the difference 

between dh/dt and V because of deformation. However, at smaller central separation, for a given h, since a 
more compliant surface will have a broader interacting zone with the other surface, the repulsive force tends 
to be larger for the softer surface. As a result, this additional effect compensates for the initiation effect 

 

Fig. S3. (Left) Schematic illustration of spring initialization in the case of infinitely rigid spring. Red 
A and B: reference points indicated by red cross. ( , )h r t indicate the surface separation and  is elastic 
coating thickness. (Right) Repulsive hydrodynamic force as a function of dimensionless surface 
separation for  
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discussed above. So, a transition and non-monotonic effects are observed in the f vs h curve for different 
coating thicknesses (Fig.5A and Fig. S3). As the surfaces approach, the lubrication pressure gets much 
bigger, and the substrate effects is getting increasingly important, and will finally dominate over the finite 
initiation effects. Therefore, we would ultimately see the red line on figures below going on top of other 
lines, if we plot Force to large enough range.  

We have run the divergence test for finer time increments and concluded that this result is not due to 
our artifact of the numerical method. In the case of a finite spring, for example, the 200K  case plotted in 
Figure 5A, the non-monotonic effect are much less pronounced compared to ~K  because the 
displacement of point B in schematic above now can be balanced with spring deflection, instead of directly 
transmitted from displacement of point A.  
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