Supporting Information

Chiral amplification of disodium cromoglycate chromonics induced by a codeine derivative

Fernán Berride, Eduardo Troche-Pesqueira, Gabriel Feio, Eurico José Cabrita, Teresa Sierra, Armando Navarro-Vázquez, María Magdalena Cid

Departamento de Química Orgánica, Edificio de Ciencias Experimentais, Campus Lagoas-Marcosende, Vigo, 36310 Spain. *E-mail: mcid@uvigo.es; Fax: +34986812262; Tel: +34986813563

CENIMAT-I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.

UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.

Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias, Pza. San Francisco, s/n - 50009 Zaragoza.

Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, Recife, CEP 50.740-54, PE, Brasil.
X-ray diffraction

![X-ray diffraction patterns](image)

Figure S1 X-ray diffraction patterns of a 9 wt% DSCG sample in a 0.3 M NaCl aqueous solution at 290K (left), and the same sample after heating up to 315K (right).

UV-Vis Spectrum

![UV-Vis absorption spectrum](image)

Figure S2 UV-Vis absorption spectrum of a 9 wt% DSCG sample in 0.3M NaCl aqueous solution.

Scheme explaining the meaning of the spins

![Spin scheme](image)

Figure S3 Simple scheme explaining how the measurements at different spins are made. The blue rectangle represents the cuvette used, and the incident light beam of the CD Spectrometer comes from the direction of the eyes that are reading this.
Circular Dichroism

![Circular Dichroism Spectra](image)

Figure S4 Comparison of Circular Dichroism Spectra of a 9 wt% DSCG sample in a 0.3 M NaCl aqueous solution at 0°, 90°, 180° and 270° with respect to the incident beam.

Differential Scanning Calorimetry (DSC)

![DSC Calorimetry](image)

Figure S5 Heating (left) and cooling (right) calorimetry curve for a 9 wt% DSCG + 0.8 wt% NMC sample in aqueous solution.

N-Methyl Codeine Synthesis

To a solution of 98 mg (0.33 mmol) of codeine in 5 mL abs. ethanol was added methyl iodide (0.1 mL, 202 mg, 1.42 mmol). The reaction mixture was refluxed for 1 h and after cooling, the solution was left to crystallize. The solvent was separated and the residue was subsequently crystallized from water. The reaction was followed by TLC. For further identification, mp and NMR were performed. Mp of our product = 243°C (decomposition). \(^1\)H and \(^13\)C NMR are showed below. The NMR peaks agree with previous results.\(^1\)
Figure S6 N-methyl codeinum iodide 1H-NMR Spectrum

1H NMR (500 MHz, Acetone-d$_6$) δ 8.69 (d, $J = 8.5$ Hz, 1H), 8.66 (d, $J = 8.4$ Hz, 1H), 7.73 (dd, $J = 8.6$, 5.1 Hz, 1H), 7.53 - 7.47 (m, 2H), 4.69 (dd, $J = 8.5$, 1.2 Hz, 1H), 4.36 - 4.30 (m, 1H), 4.05 (dd, $J = 6.5$, 3.4 Hz, 1H), 3.82 (q, 3H), 3.46 (dd, $J = 20.5$ Hz, 1H), 3.41 (q, $J = 7.4$ Hz, 1H), 3.29 (t, 3H), 3.16 (dd, $J = 10.4$, 4.2 Hz, 1H), 2.88 (d, $J = 20.5$ Hz, 1H), 2.56 (dd, $J = 14.8$, 13.5, 4.9 Hz, 1H), 2.05 (s, 3H).

Figure S7 N-methyl codeinum iodide 13C-NMR Spectrum

13C NMR (100 MHz, CD$_2$Cl$_2$) 147.79, 143.97, 136.06, 129.86, 125.54, 123.55, 123.73, 115.95, 81.20, 70.48, 66.61, 57.19, 57.65, 55.28, 53.52, 42.35, 34.51, 30.54, 28.67.
NMR signal attenuation

Figure S8 N-methyl codeinium iodide signal decay in the liquid crystal sample during the DOSY experiment in the Z axis.

\[
I = I_0 \exp \left[D g^2 \frac{\delta^2}{2} \left(\frac{\Delta}{3} - \frac{\delta}{3} \right) \right]
\]

\[
Z = \gamma g^2 \delta^2 \left(\frac{\Delta}{3} - \frac{\delta}{3} \right)
\]

Equation 1 Diffusion (D) dependence with gradient strength (g) and signal decay (I).

γ is the magnetogyric ratio of the proton (2.675×10^8 rad T$^{-1}$ s$^{-1}$), δ is the duration of the gradient, and Δ is the time interval during the two gradients.

N-methyl codeinium iodide alignment tensor in the N cromolyn phase

Data obtained by fitting residual dipolar couplings obtained for NMC in the Nd phase, using MSpin.3

Alignment tensor

\[
A'x = -2.575e-04 \\
A'y = -1.323e-03 \\
A'z = 1.580e-03
\]

Saupe tensor

\[
S'x = -3.862e-04 \\
S'y = -1.984e-03 \\
S'z = 2.371e-03
\]

Alignment tensor eigenvectors

\[
e[x] = (0.048, 0.994, -0.097) \\
e[y] = (-0.036, 0.099, 0.994) \\
e[z] = (0.998, -0.044, 0.041)
\]

Alignment tensor in laboratory coordinates:

\[
\begin{bmatrix}
1.572e-03 & -7.667e-05 & 1.132e-04 \\
-7.667e-05 & -2.644e-04 & -1.084e-04 \\
1.132e-04 & -1.084e-04 & -1.308e-03
\end{bmatrix}
\]

SVD condition number is 7.574e+00

Axial component $Aa = 2.371e-03$

Rhombic component $Ar = 1.065e-03$

Rhombicity $R = 4.494e-01$

Asimmetry parameter $\varepsilon = 6.742e-01$

GDO = 3.032e-03
Euler Angles (degrees)
Set 1 (-47.1,-86.6,-37.3) Set 2 (132.9,266.6,142.7)

Figure S9 N-methyl codeinium iodide and its alignment tensor in the DSCG N⁴ phase, along with the axis of the alignment tensor.

Figure S10 N-methyl codeinium iodide molecular ellipsoid.
